4.3 Article

Negligible magnetic losses at low temperatures in liquid phase epitaxy grown Y3Fe5O12 films

期刊

PHYSICAL REVIEW MATERIALS
卷 7, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevMaterials.7.054411

关键词

-

向作者/读者索取更多资源

Yttrium iron garnet (YIG) grown by liquid phase epitaxy exhibits unique low-temperature magnetization dynamics, with negligible increase in ferromagnetic resonance linewidth down to 10 K. This is attributed to the absence of rare-earth impurities and the suppression of Gd diffusion from the substrate. Compared to YIG films grown by other deposition methods, liquid phase epitaxy YIG films have a sharper YIG/GGG interface and significantly lower ferromagnetic resonance linewidths below 50 K. These films are ideal for low-temperature experiments/applications that require low magnetic losses.
Yttrium iron garnet (Y3Fe5O12; YIG) has a unique combination of low magnetic damping, high spin-wave conductivity, and insulating properties that make it a highly attractive material for a variety of applications in the fields of magnetics and spintronics. While the room-temperature magnetization dynamics of YIG have been extensively studied, there are limited reports correlating the low-temperature magnetization dynamics to the material structure or growth method. Here we investigate liquid phase epitaxy grown YIG films and their magnetization dynamics at temperatures down to 10 K. We show there is a negligible increase in the ferromagnetic resonance linewidth down to 10 K, which is unique when compared with YIG films grown by other deposition methods. From the broadband ferromagnetic resonance measurements, polarized neutron reflectivity, and scanning transmission electron microscopy, we conclude that these liquid phase epitaxy grown films have negligible rare-earth impurities present, specifically the suppression of Gd diffusion from the Gd3Ga5O12 (GGG) substrate into the Y3Fe5O12 film, and therefore negligible magnetic losses attributed to the slow-relaxation mechanism. Overall, liquid phase epitaxy YIG films have a YIG/GGG interface that is five times sharper and have ten times lower ferromagnetic resonance linewidths below 50 K than comparable YIG films by other deposition methods. Thus, liquid phase epitaxy grown YIG films are ideal for low-temperature experiments/applications that require low magnetic losses, such as quantum transduction and manipulation via magnon coupling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据