4.6 Article

A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature

期刊

NATURE BIOMEDICAL ENGINEERING
卷 -, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41551-023-01022-4

关键词

-

向作者/读者索取更多资源

Devices for monitoring blood haemodynamics can guide the perioperative management of patients with cardiovascular disease. In this study, an integrated wireless sensor capable of measuring pressure, flow rate and temperature simultaneously and in real time was developed. The device showed comparable performance to clinical tools in large animal models, providing the potential for continuous monitoring of blood haemodynamics in patients.
Devices for monitoring blood haemodynamics can guide the perioperative management of patients with cardiovascular disease. Current technologies for this purpose are constrained by wired connections to external electronics, and wireless alternatives are restricted to monitoring of either blood pressure or blood flow. Here we report the design aspects and performance parameters of an integrated wireless sensor capable of implantation in the heart or in a blood vessel for simultaneous measurements of pressure, flow rate and temperature in real time. The sensor is controlled via long-range communication through a subcutaneously implanted and wirelessly powered Bluetooth Low Energy system-on-a-chip. The device can be delivered via a minimally invasive transcatheter procedure or it can be mounted on a passive medical device such as a stent, as we show for the case of the pulmonary artery in a pig model and the aorta and left ventricle in a sheep model, where the device performs comparably to clinical tools for monitoring of blood flow and pressure. Battery-less and wireless devices such as these that integrate capabilities for flow, pressure and temperature sensing offer the potential for continuous monitoring of blood haemodynamics in patients. A battery-less and wireless integrated sensor implanted in the heart or in a blood vessel can measure blood pressure, flow rate and temperature simultaneously and in real time, as shown in large animal models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据