4.7 Article

Rhizoglomus intraradices Is More Prominent in Improving Soil Aggregate Distribution and Stability Than in Improving Plant Physiological Activities

期刊

AGRONOMY-BASEL
卷 13, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/agronomy13051427

关键词

aggregate stability; glomalin; maize; mycorrhizal fungi; soil organic carbon

向作者/读者索取更多资源

This study analyzed the effects of Rhizoglomus intraradices on plant growth, root morphology, leaf chlorophyll and gas exchange, sugar concentrations, and soil nutrients, aggregate distribution, and stability in marigold, maize, white clover, and vetch plants. The results showed that AMF inoculation significantly increased the chlorophyll index, net photosynthetic rate, stomatal conductance, and transpiration rate of the plants. In addition, AMF significantly increased the soil organic carbon, available potassium content, and glomalin-related soil protein levels, as well as the stability of water-stable aggregates in all four plants.
Arbuscular mycorrhizal fungi (AMF) confer positive and negative effects on many plants, but it is unclear whether AMF has an effect on soil fertility, aggregate distribution, and stability. The aim of this study was to analyze the effects of Rhizoglomus intraradices on plant growth, root morphology, leaf chlorophyll and gas exchange, sugar concentrations, and soil nutrients, aggregate distribution, and stability in marigold (Tagetes erecta L.), maize (Zea mays L.), white clover (Trifolium repens L.), and vetch (Vicia villosa Roth.) plants. Twelve weeks after R. intraradices inoculation, maize presented the highest mycorrhizal development, while mycorrhizal dependence was shown to be the decreasing trend in marigold > white clover > vetch > maize. AMF inoculation significantly increased the chlorophyll index of marigold and white clover, the net photosynthetic rate of white clover, the stomatal conductance of maize and white clover, and the transpiration rate of maize. Fructose, glucose, and sucrose in the four plants were differentially affected by R. intraradices. R. intraradices significantly increased the soil organic carbon (SOC) of marigold, maize, and white clover, the Olsen-P of white clover, the available K content of marigold, the easily extractable glomalin-related soil protein (GRSP) of maize, and the difficultly extractable and total GRSP levels of marigold and vetch. In addition, R. intraradices significantly increased the stability of soil water-stable aggregates (WSAs) in all four plants, plus it increased WSA at 0.5-4 mm sizes. Root AMF colonization was significantly positively correlated with WSA stability, SOC, difficultly extractable GRSP, and total GRSP. It is concluded that AMF-triggered changes in plant growth, physiological activities, and soil fertility depended on plant species, but AMF-improved WSA distribution and stability were not dependent on plant species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据