4.7 Article

Improved Water Use of the Maize Soil-Root-Shoot System under the Integrated Effects of Organic Manure and Plant Density

期刊

AGRONOMY-BASEL
卷 13, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/agronomy13041172

关键词

water use efficiency; dryland agriculture; organic manure application

向作者/读者索取更多资源

Water shortage and soil erosion greatly restrict agricultural development on the Loess Plateau in China. The study shows that treatment with organic manure significantly increases maize grain yield and water use efficiency. Organic manure also promotes root growth and maximizes water transpiration and evaporation, playing a vital role in biomass allocation. These findings provide important guidance for increasing maize yield and can serve as a reference for other crops in understanding the relationship between water and manure.
On the Loess Plateau of China, water shortage and serious soil erosion are the key factors that restrict local agricultural development, especially in terms of crop yield. In order to expound the effect of treatment with organic manure in root growth, water transpiration and evaporation, biomass allocation and grain yield and WUE (water use efficiency), we took maize (Zheng Dan 958) sown for four years with three replicates at three densities. The results show that the highest rate of maize grain yield increase with organic manure is about 9.99% for a density of 90,000 plants/ha; at the same time, ET (evapotranspiration) and WUE also achieved marked increments, which the highest values of 415.47 mm with a density of 75,000 plants/ha and 7.92% with a density of 90,000 plants/ha, respectively. The results also demonstrate the obvious effect of organic manure in enhancing root growth and in the maximization of water transpiration and evaporation, and water use plays a vital and valuable role in biomass allocation. The results also serve as orientation for methods to increase maize yield and a reference for other crops in the relation of water and manure to their growth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据