4.6 Article

Financial Time Series Forecasting: A Data Stream Mining-Based System

期刊

ELECTRONICS
卷 12, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/electronics12092039

关键词

data stream mining; forex; online learning; adaptive learning; incremental learning; sliding window; concept drift; financial time series forecasting

向作者/读者索取更多资源

Data stream mining can be used to forecast financial time series exchange rate. Traditional static machine learning models are not suitable for the cyclical patterns in financial historical data. This paper proposes a possible methodology that uses incremental and adaptive strategy to cope with instability. The proposed algorithm utilizes online learning and statistical techniques to detect and respond to pattern shifts in the data trend.
Data stream mining (DSM) represents a promising process to forecast financial time series exchange rate. Financial historical data generate several types of cyclical patterns that evolve, grow, decrease, and end up dying. Within historical data, we can notice long-term, seasonal, and irregular trends. All these changes make traditional static machine learning models not relevant to those study cases. The statistically unstable evolution of financial market behavior yields a progressive deterioration in any trained static model. Those models do not provide the required characteristics to evolve continuously and sustain good forecasting performance as the data distribution changes. Online learning without DSM mechanisms can also miss sudden or quick changes. In this paper, we propose a possible DSM methodology, trying to cope with that instability by implementing an incremental and adaptive strategy. The proposed algorithm includes the online Stochastic Gradient Descent algorithm (SGD), whose weights are optimized using the Particle Swarm Optimization Metaheuristic (PSO) to identify repetitive chart patterns in the FOREX historical data by forecasting the EUR/USD pair's future values. The data trend change is detected using a statistical technique that studies if the received time series instances are stationary or not. Therefore, the sliding window size is minimized as changes are detected and maximized as the distribution becomes more stable. Results, though preliminary, show that the model prediction is better using flexible sliding windows that adapt according to the detected distribution changes using stationarity compared to learning using a fixed window size that does not incorporate any techniques for detecting and responding to pattern shifts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据