4.6 Article

Environmental Prediction in Cold Chain Transportation of Agricultural Products Based on K-Means++ and LSTM Neural Network

期刊

PROCESSES
卷 11, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/pr11030776

关键词

cold chain transportation; k-means++; LSTM neural network; prediction; data fusion

向作者/读者索取更多资源

This study proposes a cold chain transportation environment prediction method combining k-means++ and a long short-term memory (LSTM) neural network. The predicted model can forecast the trend of cold chain environment changes in the next ten minutes and provide guidance for environmental control equipment. The model shows satisfactory prediction accuracy and can offer strategic support for the fine management and regulation of the cold chain transportation environment.
Experiments have proven that traditional prediction research methods have limitations in practice. Proposing countermeasures for environmental changes is the key to optimal control of the cold chain environment and reducing the lag of control effects. In this paper, a cold chain transportation environment prediction method, combining k-means++ and a long short-term memory (LSTM) neural network, is proposed according to the characteristics of the cold chain transportation environment of agricultural products. The proposed prediction model can predict the trend of cold chain environment changes in the next ten minutes, which allows cold chain vehicle managers to issue control instructions to the environmental control equipment in advance. The fusion process for temperature and humidity data measured by multiple data sensors is performed with the k-means++ algorithm, and then the fused data are fed into an LSTM neural network for prediction based on time series. The prediction error of the prediction model proposed in this paper is very satisfactory, with a root-mean-square error (RMSE), mean absolute error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE) and R-squared of 0.5707, 0.2484, 0.3258, 0.0312 and 0.9660, respectively, for temperature prediction, and with an RMSE, MAE, MSE, mean absolute percentage error and R-squared of 1.6015, 1.1770, 2.5648, 0.2736 and 0.9702, respectively, for humidity prediction. Finally, the LSTM neural network and back propagation (BP) neural network are compared in order to enhance the reliability of the results. In terms of the prediction effect of the temperature and humidity in cold chain vehicles transporting agricultural products, the proposed model has a higher prediction accuracy than that of existing models and can provide strategic support for the fine management and regulation of the cold chain transportation environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据