4.7 Article

Design and Characterization of a Novel Venetoclax-Zanubrutinib Nano-Combination for Enhancing Leukemic Cell Uptake and Long-Acting Plasma Exposure

期刊

PHARMACEUTICS
卷 15, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/pharmaceutics15031016

关键词

leukemia; nanoparticles; combination therapy

向作者/读者索取更多资源

Leukemia remains incurable due to difficulties in maintaining therapeutic drug concentrations. However, a new drug combination nanoparticle (DcNP) called VZ-DcNP shows promise in synchronizing and extending the effect of two leukemic drugs, venetoclax and zanubrutinib. VZ-DcNP enhances uptake and plasma exposure of both drugs, and prolongs their half-lives in mice. These findings suggest that VZ-DcNP could be developed as a long-acting drug combination for leukemia treatment.
Leukemia remains incurable partly due to difficulties in reaching and maintaining therapeutic drug concentrations in the target tissues and cells. Next-generation drugs targeted to multiple cell checkpoints, including the orally active venetoclax (Bcl-2 target) and zanubrutinib (BTK target), are effective and have improved safety and tolerability compared to conventional, nontargeted chemotherapies. However, dosing with a single agent frequently leads to drug resistance; asynchronous coverage due to the peak-and-trough time-course of two or more oral drugs has prevented drug combinations from simultaneously knocking out the respective drugs' targets for sustained leukemia suppression. Higher doses of the drugs may potentially overcome asynchronous drug exposure in leukemic cells by saturating target occupancy, but higher doses often cause dose-limiting toxicities. To synchronize multiple drug target knockout, we have developed and characterized a drug combination nanoparticle (DcNP), which enables the transformation of two short-acting, orally active leukemic drugs, venetoclax and zanubrutinib, into long-acting nanoformulations (VZ-DCNPs). VZ-DCNPs exhibit synchronized and enhanced cell uptake and plasma exposure of both venetoclax and zanubrutinib. Both drugs are stabilized by lipid excipients to produce the VZ-DcNP nanoparticulate (d similar to 40 nm) product in suspension. The VZ-DcNP formulation has enhanced uptake of the two drugs (VZ) in immortalized leukemic cells (HL-60), threefold over that of its free drug counterpart. Additionally, drug-target selectivity of VZ was noted with MOLT-4 and K562 cells that overexpress each target. When given subcutaneously to mice, the half-lives of venetoclax and zanubrutinib were extended by approximately 43- and 5-fold, respectively, compared to an equivalent free VZ. Collectively, these data suggest that VZ in VZ-DcNP warrant consideration for preclinical and clinical development as a synchronized and long-acting drug-combination for the treatment of leukemia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据