4.7 Article

Synthesis and Characterization of Linear Copolymers Based on Pharmaceutically Functionalized Monomeric Choline Ionic Liquid for Delivery of p-Aminosalicylate

期刊

PHARMACEUTICS
卷 15, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/pharmaceutics15030860

关键词

choline; p-aminosalicylate; poly(ionic liquid)s; anion exchange; drug delivery system

向作者/读者索取更多资源

Bioactive linear poly(ionic liquid)s (PIL) were designed as carriers in drug delivery systems (DDS). Their synthesis was based on a monomeric ionic liquid (MIL) with a relevant pharmaceutical anion to create therapeutically functionalized monomers, which further can be used in the controlled atom transfer radical polymerization (ATRP). The resulting copolymers showed efficient exchange of pharmaceutical anions, indicating their potential as drug delivery carriers.
Bioactive linear poly(ionic liquid)s (PIL) were designed as carriers in drug delivery systems (DDS). Their synthesis was based on a monomeric ionic liquid (MIL) with a relevant pharmaceutical anion to create therapeutically functionalized monomers, which further can be used in the controlled atom transfer radical polymerization (ATRP). The presence of chloride counterions in the quaternary ammonium groups of choline MIL, e.g., [2-(methacryloyloxy)ethyl]trimethyl-ammonium chloride (ChMACl), was stimulated to undergo the anion exchange with p-aminosalicylate sodium salt (NaPAS) as the source of the pharmaceutical anion with antibacterial activity. The resultant [2-(methacryloyloxy)ethyl]trimethylammonium p-aminosalicylate (ChMAPAS) was copolymerized to attain the well-defined linear choline-based copolymers with various contents of PAS anions (24-42%), which were regulated by the initial ratio of ChMAPAS to MMA and conversion degree. The length of polymeric chains was evaluated by the total monomer conversion (31-66%) yielding degree of polymerization (DPn = 133-272). Depending on the polymer carrier composition, PAS anions were exchanged by 60-100% within 1 h, 80-100% within 4 h, and completely after 24 h by phosphate anions in PBS imitating a physiological fluid.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据