4.6 Article

Tauroursodeoxycholic Acid Enhances Osteogenic Differentiation through EGFR/p-Akt/CREB1 Pathway in Mesenchymal Stem Cells

期刊

CELLS
卷 12, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/cells12111463

关键词

tauroursodeoxycholic acid; osteogenic differentiation; epidermal growth factor receptor; human mesenchymal stem cell

向作者/读者索取更多资源

Mesenchymal stem cells (MSCs) are pluripotent stromal cells that have potential applications in regenerative medicine. Tauroursodeoxycholic acid (TUDCA) is a drug that has been used in various cell types. However, the mechanism of osteogenic differentiation by TUDCA in human MSCs is still unknown.
Background: Mesenchymal stem cells (MSCs) are pluripotent stromal cells that are among the most appealing candidates for regenerative medicine and may aid in the repair and regeneration of skeletal disorders through multiple mechanisms, including angiogenesis, differentiation, and response to inflammatory conditions. Tauroursodeoxycholic acid (TUDCA) has recently been used in various cell types as one of these drugs. The mechanism of osteogenic differentiation by TUDCA in hMSCs remains unknown. Methods: Cell proliferation was performed by the WST-1 method, and alkaline phosphatase activity and alizarin red-sulfate staining were used to confirm the osteogenic differentiation indicator. Expression of genes related to bone differentiation and specific genes related to signaling pathways was confirmed by quantitative real-time polymerase chain reaction. Results: We found that cell proliferation was higher as the concentration increased, and showed that the induction of osteogenic differentiation was significantly enhanced. We also show that osteogenic differentiation genes were upregulated, with the expression of the epidermal growth factor receptor (EGFR) and cAMP responsive element binding protein 1 (CREB1) being specifically high. To confirm the participation of the EGFR signaling pathway, the osteogenic differentiation index and expression of osteogenic differentiation genes were determined after using an EGFR inhibitor. As a result, EGFR expression was remarkably low, and that of CREB1, cyclin D1, and cyclin E1 was also significantly low. Conclusions: Therefore, we suggest that TUDCA-induced osteogenic differentiation of human MSCs is enhanced through the EGFR/p-Akt/CREB1 pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据