4.6 Article

Human Adult Renal Progenitor Cells Prevent Cisplatin-Nephrotoxicity by Inducing CYP1B1 Overexpression and miR-27b-3p Down-Regulation through Extracellular Vesicles

期刊

CELLS
卷 12, 期 12, 页码 -

出版社

MDPI
DOI: 10.3390/cells12121655

关键词

cisplatin-induced AKI; onconephrology; regenerative medicine; tubular adult renal progenitor cells; extracellular vesicles; cytochrome P450; miR-27b-3p; MIR210HG; LINC00511

向作者/读者索取更多资源

In this study, it was found that tubular adult renal progenitor cells (tARPC) can influence the gene expression of renal proximal tubular cell (RPTEC) during cisplatin-induced nephrotoxicity via the release of extracellular vesicles (EV) enriched with CYP1B1 and miR-27b-3p. CYP1B1 expression was correlated with renal function.
Cisplatin is one of the most effective chemotherapeutic agents strongly associated with nephrotoxicity. Tubular adult renal progenitor cells (tARPC) can regenerate functional tubules and participate in the repair processes after cisplatin exposition. This study investigated the molecular mechanisms underlying the protective effect of tARPC on renal epithelium during cisplatin nephrotoxicity. By performing a whole-genome transcriptomic analysis, we found that tARPC, in presence of cisplatin, can strongly influence the gene expression of renal proximal tubular cell [RPTEC] by inducing overexpression of CYP1B1, a member of the cytochrome P450 superfamily capable of metabolizing cisplatin and of hypoxia/cancer-related lncRNAs as MIR210HG and LINC00511. Particularly, tARPC exerted renoprotection and regeneration effects via extracellular vesicles (EV) enriched with CYP1B1 and miR-27b-3p, a well-known CYP1B1 regulatory miRNA. The expression of CYP1B1 by tARPC was confirmed by analyzing biopsies of cisplatin-treated renal carcinoma patients that showed the colocalization of CYP1B1 with the tARPC marker CD133. CYP1B1 was also overexpressed in urinary EV purified from oncologic patients that presented nephrotoxicity episodes after cisplatin treatment. Interestingly CYP1B1 expression significantly correlated with creatinine and eGFR levels. Taken together, our results show that tARPC are able to counteract cisplatin-induced nephrotoxicity via CYP1B1 release through EV. These findings provide a promising therapeutic strategy for nephrotoxicity risk assessment that could be related to abundance of renal progenitors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据