4.7 Article

Highly stable integration of graphene Hall sensors on a microfluidic platform for magnetic sensing in whole blood

期刊

MICROSYSTEMS & NANOENGINEERING
卷 9, 期 1, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1038/s41378-023-00530-2

关键词

-

向作者/读者索取更多资源

We developed CMOS-compatible graphene Hall sensors integrated with PDMS microfluidics for magnetic sensing in blood, which can overcome the limitations of traditional technologies in clinical applications, and show high sensitivity and reliability. They can also be integrated with microfluidics and sensing electronics for in-flow detection of magnetic beads.
The detection and analysis of rare cells in complex media such as blood is increasingly important in biomedical research and clinical diagnostics. Micro-Hall detectors (mu HD) for magnetic detection in blood have previously demonstrated ultrahigh sensitivity to rare cells. This sensitivity originates from the minimal magnetic background in blood, obviating cumbersome and detrimental sample preparation. However, the translation of this technology to clinical applications has been limited by inherently low throughput (<1 mL/h), susceptibility to clogging, and incompatibility with commercial CMOS foundry processing. To help overcome these challenges, we have developed CMOS-compatible graphene Hall sensors for integration with PDMS microfluidics for magnetic sensing in blood. We demonstrate that these graphene mu HDs can match the performance of the best published mu HDs, can be passivated for robust use with whole blood, and can be integrated with microfluidics and sensing electronics for in-flow detection of magnetic beads. We show a proof-of-concept validation of our system on a silicon substrate and detect magnetic agarose beads, as a model for cells, demonstrating promise for future integration in clinical applications with a custom CMOS chip.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据