4.7 Article

Discovery of the Streamlined Haloarchaeon Halorutilus salinus, Comprising a New Order Widespread in Hypersaline Environments across the World

期刊

MSYSTEMS
卷 8, 期 2, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/msystems.01198-22

关键词

hypersaline environments; Halorutilales ord; nov; comparative genomics; streamlining; RuBisCO; microbial ecology; osmoadaptation

向作者/读者索取更多资源

The discovery of a new halophilic archaeon, Halorutilus salinus, representing a novel order, family, genus, and species within the class Halobacteria and phylum Euryarchaeota, expands the current taxonomical knowledge of this group of archaea. The in-depth comparative genomic analysis reveals the ecological success and non-isolation of this organism, as well as its coding of the archaeal RuBisCO gene with a streamlined genome.
The class Halobacteria is one of the most diverse groups within the Euryarchaeota phylum, whose members are ubiquitously distributed in hypersaline environments, where they often constitute the major population. Here, we report the discovery and isolation of a new halophilic archaeon, strain F3-133(T) exhibiting <= 86.3% 16S rRNA gene identity to any previously cultivated archaeon, and, thus, representing a new order. Analysis of available 16S rRNA gene amplicon and metagenomic data sets showed that the new isolate represents an abundant group in intermediate-to-high salinity ecosystems and is widely distributed across the world. The isolate presents a streamlined genome, which probably accounts for its ecological success in nature and its fastidious growth in culture. The predominant osmoprotection mechanism appears to be the typical salt-in strategy used by other haloarchaea. Furthermore, the genome contains the complete gene set for nucleotide monophosphate degradation pathway through archaeal RuBisCO, being within the first halophilic archaea representatives reported to code this enzyme. Genomic comparisons with previously described representatives of the phylum Euryarchaeota were consistent with the 16S rRNA gene data in supporting that our isolate represents a novel order within the class Halobacteria for which we propose the names Halorutilales ord. nov., Halorutilaceae fam. nov., Halorutilus gen. nov. and Halorutilus salinus sp. nov.IMPORTANCE The discovery of the new halophilic archaeon, Halorutilus salinus, representing a novel order, family, genus, and species within the class Halobacteria and phylum Euryarchaeota clearly enables insights into the microbial dark matter, expanding the current taxonomical knowledge of this group of archaea. The in-depth comparative genomic analysis performed on this new taxon revealed one of the first known examples of an Halobacteria representative coding the archaeal RuBisCO gene and with a streamlined genome, being ecologically successful in nature and explaining its previous non-isolation. Altogether, this research brings light into the understanding of the physiology of the Halobacteria class members, their ecological distribution, and capacity to thrive in hypersaline environments. The discovery of the new halophilic archaeon, Halorutilus salinus, representing a novel order, family, genus, and species within the class Halobacteria and phylum Euryarchaeota clearly enables insights into the microbial dark matter, expanding the current taxonomical knowledge of this group of archaea. The in-depth comparative genomic analysis performed on this new taxon revealed one of the first known examples of an Halobacteria representative coding the archaeal RuBisCO gene and with a streamlined genome, being ecologically successful in nature and explaining its previous non-isolation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据