4.8 Article

Learning the right channel in multimodal imaging: automated experiment in piezoresponse force microscopy

期刊

NPJ COMPUTATIONAL MATERIALS
卷 9, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41524-023-00985-x

关键词

-

向作者/读者索取更多资源

We developed automated experiment workflows for identifying the best predictive channel in spectroscopic measurements. The approach combines ensembled deep kernel learning for probabilistic predictions and reinforcement learning for channel selection. The implementation in multimodal imaging of piezoresponse force microscopy (PFM) showed that the amplitude is the best predictive channel for polarization-voltage and frequency-voltage hysteresis loop areas. This workflow and code can be applied to other multimodal imaging and local characterization methods.
We report the development and experimental implementation of the automated experiment workflows for the identification of the best predictive channel for a phenomenon of interest in spectroscopic measurements. The approach is based on the combination of ensembled deep kernel learning for probabilistic predictions and a basic reinforcement learning policy for channel selection. It allows the identification of which of the available observational channels, sampled sequentially, are most predictive of selected behaviors, and hence have the strongest correlations. We implement this approach for multimodal imaging in piezoresponse force microscopy (PFM), with the behaviors of interest manifesting in piezoresponse spectroscopy. We illustrate the best predictive channel for polarization-voltage hysteresis loop and frequency-voltage hysteresis loop areas is amplitude in the model samples. The same workflow and code are applicable for any multimodal imaging and local characterization methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据