4.8 Article

Polymer graph neural networks for multitask property learning

期刊

NPJ COMPUTATIONAL MATERIALS
卷 9, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41524-023-01034-3

关键词

-

向作者/读者索取更多资源

Predicting polymer properties based on their monomer composition has been a challenge in material informatics. In this study, a multitask machine learning architecture called PolymerGNN was developed to accurately estimate polymer properties. PolymerGNN utilizes polymeric features and graph neural networks and relies on a database of complex and heterogeneous polyesters. The performance of PolymerGNN was demonstrated through a virtual screening of a large database with variable composition.
The prediction of a variety of polymer properties from their monomer composition has been a challenge for material informatics, and their development can lead to a more effective exploration of the material space. In this work, PolymerGNN, a multitask machine learning architecture that relies on polymeric features and graph neural networks has been developed towards this goal. PolymerGNN provides accurate estimates for polymer properties based on a database of complex and heterogeneous polyesters (linear/branched, homopolymers/copolymers) with experimentally refined properties. In PolymerGNN, each polyester is represented as a set of monomer units, which are introduced as molecular graphs. A virtual screening of a large, computationally generated database with materials of variable composition was performed, a task that demonstrates the applicability of the PolymerGNN on future studies that target the exploration of the polymer space. Finally, a discussion on the explainability of the models is provided.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据