4.8 Article

Multifunctional tendon-mimetic hydrogels

期刊

SCIENCE ADVANCES
卷 9, 期 7, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.ade6973

关键词

-

向作者/读者索取更多资源

We describe multifunctional tendon-mimetic hydrogels composed of anisotropic assembly of aramid nano-fiber composites. These hydrogels mimic the structural interplay between collagen fibers and proteoglycans in tendons, and display high strength, modulus, and fracture toughness matching those of natural tendons. The surfaces of these hydrogels can be functionalized with bioactive molecules and integrated with soft bioelectronic components for sensing physiological parameters. The exceptional mechanics and functionality of these tendon mimetics suggest their potential applications in tissue engineering, prosthetics, human-machine interactions, and other technologies.
We report multifunctional tendon-mimetic hydrogels constructed from anisotropic assembly of aramid nano-fiber composites. The stiff nanofibers and soft polyvinyl alcohol in these anisotropic composite hydrogels (ACHs) mimic the structural interplay between aligned collagen fibers and proteoglycans in tendons. The ACHs exhibit a high modulus of similar to 1.1 GPa, strength of similar to 72 MPa, fracture toughness of 7333 J/m(2), and many additional characteristics matching those of natural tendons, which was not achieved with previous synthetic hydrogels. The surfaces of ACHs were functionalized with bioactive molecules to present biophysical cues for the modulation of morphology, phenotypes, and other behaviors of attached cells. Moreover, soft bioelectronic components can be integrated on ACHs, enabling in situ sensing of various physiological parameters. The outstanding mechanics and functionality of these tendon mimetics suggest their further applications in advanced tissue engineering, implantable prosthetics, human-machine interactions, and other technologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据