4.6 Editorial Material

Capturing the hole states of oxygen

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Article Energy & Fuels

Delocalized electron holes on oxygen in a battery cathode

Robert A. House et al.

Summary: Oxide ions in transition metal oxide cathodes can store charge at high voltage. However, during charging, the oxidized oxide ions form trapped O-2, resulting in undesirable voltage hysteresis. By studying ribbon-ordered Na-0.6[Li0.2Mn0.8]O-2, the authors discovered the delocalized electron holes on oxide ions before O-2 formation. The understanding of these hole states is crucial for realizing reversible high-voltage O-redox cathodes.

NATURE ENERGY (2023)

Article Chemistry, Multidisciplinary

Delocalized Metal-Oxygen π-Redox Is the Origin of Anomalous Nonhysteretic Capacity in Li-Ion and Na-Ion Cathode Materials

Daniil A. Kitchaev et al.

Summary: The study presents the first consistent mechanism of nonhysteretic oxidation beyond the transition metal limit, explaining the electrochemical and structural evolution of Na2Mn3O7 and Li2IrO3 model materials. The source of anomalous nonhysteretic capacity is identified as a pi-bonded metal-d and O-p orbital network, enabled by a unique resistance to transition metal migration. Voltage, accessible capacity, and structural evolution upon oxidation are shown to be collective properties of the pi-network rather than local bonding environments.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2021)

Article Multidisciplinary Sciences

Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes

Robert A. House et al.

NATURE (2020)