4.6 Article

Growing single-crystalline seeds on lithiophobic substrates to enable fast-charging lithium-metal batteries

期刊

NATURE ENERGY
卷 8, 期 4, 页码 340-350

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41560-023-01202-1

关键词

-

向作者/读者索取更多资源

Controlling the nucleation and growth is essential for enabling long-life Li-metal batteries. Here, the authors report the growth of faceted single-crystalline Li seeds on a lithiophobic Fe/LiF composite substrate that enables dense Li deposition under fast-charging conditions. A cell using a 3 mAh cm(-2) LiNi0.8Co0.1Mn0.1O2 (LiNMC811) cathode, onefold excess of lithium and 3 g Ah(-1) electrolyte cycles at a 1 C rate for more than 130 cycles with 80% capacity retention, a 550% improvement over the baseline cells. These findings advance the understanding of lithium nucleation and pave the way for realizing high-energy, fast-charging Li-metal batteries.
Controlling the nucleation and growth of lithium metal is essential for realizing fast-charging batteries. Here we report the growth of single-crystalline seeds that results in the deposition of dense lithium, even at high current densities. Contrary to the widely accepted practice of using a lithiophilic surface to achieve dendrite-free deposition, we employ a lithiophobic surface made of a nanocomposite of LiF and Fe to deposit hexagonal crystals, which induce subsequent dense lithium deposition. The nanocomposites have uniform Fe sites for nucleation while LiF enables rapid lithium transport. A cell using a 3 mAh cm(-2) LiNi0.8Co0.1Mn0.1O2 (LiNMC811) cathode, onefold excess of lithium and 3 g Ah(-1) electrolyte cycles at a 1 C rate for more than 130 cycles with 80% capacity retention, a 550% improvement over the baseline cells. Our findings advance the understanding of lithium nucleation and pave the way for realizing high-energy, fast-charging Li-metal batteries. Controlling the nucleation and growth is essential for enabling long-life Li-metal batteries. Here the authors report the growth of faceted single-crystalline Li seeds on a lithiophobic Fe/LiF composite substrate that enables dense Li deposition under fast-charging conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据