4.6 Article

Competitive Solvation-Induced Interphases Enable Highly Reversible Zn Anodes

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Article Chemistry, Physical

Enabling Highly Reversible Zn Anode by Multifunctional Synergistic Effects of Hybrid Solute Additives

Xiang Feng et al.

Summary: In this study, a hybrid electrolyte system consisting of 3 M Zn(OTf)2 as zinc salt and 1 M urea + 0.3 M LiOAc as hybrid solute additives is reported for highly reversible aqueous zinc ion batteries.

ACS ENERGY LETTERS (2023)

Review Chemistry, Inorganic & Nuclear

Advances and strategies in electrolyte regulation for aqueous zinc-based batteries

Zhaohui Xing et al.

Summary: This review highlights the core challenges and strategies for improving the interface behavior of zinc anodes in aqueous zinc-based secondary batteries. The strategies are categorized into three paths, including guiding uniform zinc deposition, regulating solvation structure, and constructing an artificial interface layer, aimed at addressing issues such as dendrite growth and hydrogen evolution. Existing deficiencies and potential methods for further development of aqueous zinc-based battery electrolytes are also summarized.

COORDINATION CHEMISTRY REVIEWS (2022)

Review Chemistry, Multidisciplinary

Electrolyte Salts and Additives Regulation Enables High Performance Aqueous Zinc Ion Batteries: A Mini Review

Yixun Du et al.

Summary: Aqueous zinc ion batteries, with their advantages of low cost, high safety, and eco-friendliness, have attracted significant attention. Current research focuses on cathode materials design and storage mechanisms, while there is insufficient emphasis on enhancing performance through modifying electrolyte salts and additives.
Article Multidisciplinary Sciences

Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries

Giorgia Zampardi et al.

Summary: Aqueous zinc-ion batteries have potential as stationary storage systems for power-grid applications, but certain challenges need to be addressed and experimental practices need to be aligned with industrial working conditions to promote their commercialization.

NATURE COMMUNICATIONS (2022)

Article Chemistry, Physical

A Versatile Cation Additive Enabled Highly Reversible Zinc Metal Anode

Rui Yao et al.

Summary: This study introduces a dual-function electrolyte additive to address severe side reactions over zinc metal anodes in aqueous zinc metal batteries, resulting in stable cycling for over 2145 hours. The strategy also enhances the reversibility of energy storage devices based on manganese dioxide and activated carbon.

ADVANCED ENERGY MATERIALS (2022)

Review Chemistry, Physical

Emerging Era of Electrolyte Solvation Structure and Interfacial Model in Batteries

Haoran Cheng et al.

Summary: Recent research has shown that not only the solid-electrolyte interphase (SEI) layer but also the metal-ion solvation structure and interfacial model in the electrolyte significantly affect the performance of lithium-ion batteries. In this paper, the authors summarize recent studies on the importance of electrolyte solvation structure, develop a quantitative model, and propose an interfacial model to understand the electrode's performance. These findings may lead to a new era beyond the SEI and have implications for the design and improvement of LIBs.

ACS ENERGY LETTERS (2022)

Article Chemistry, Physical

Tuning the Solvation Structure in Aqueous Zinc Batteries to Maximize Zn-Ion Intercalation and Optimize Dendrite-Free Zinc Plating

Chang Li et al.

Summary: In this study, the harmful H+ intercalation in aqueous zinc batteries is successfully suppressed by tuning the solvation structure, leading to reversible cycling of the battery.

ACS ENERGY LETTERS (2022)

Article Energy & Fuels

Rational solvent molecule tuning for high-performance lithium metal battery electrolytes

Zhiao Yu et al.

Summary: The authors designed and synthesized a family of fluorinated-1,2-diethoxyethanes as electrolyte solvents, addressing the issue of cycling capability in lithium metal batteries and uncovering the relationship between electrolyte structure and performance.

NATURE ENERGY (2022)

Article Chemistry, Multidisciplinary

Semi-Immobilized Ionic Liquid Regulator with Fast Kinetics toward Highly Stable Zinc Anode under-35 to 60 °C

Ming Zhao et al.

Summary: This study proposes a strategy to fabricate a semi-immobilized ionic liquid interface layer in order to address the issues of irregular dendrite growth and side reactions in aqueous zinc ion batteries (ZIBs). By using immobilized SiO2@cation and free anions, the Zn anode is protected and achieves stable cycling performance over a wide temperature range.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

High-Efficiency and Stable Zn-Na3V2(PO4)3 Aqueous Battery Enabled by Electrolyte-Induced Interphasial Engineering

Gaoli Guo et al.

Summary: This study addresses the degradation and low Coulombic efficiency issues of NASICON-type cathodes in aqueous zinc batteries and proposes an effective solution through the rational design of aqueous electrolytes. The results demonstrate stable battery performance and high cycling Coulombic efficiencies.

CHEMSUSCHEM (2022)

Article Chemistry, Physical

Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry

Chang Li et al.

Summary: This study introduces a novel additive that effectively solves the issues in aqueous zinc-metal batteries, leading to excellent cycling performance and efficient zinc deposition.
Article Chemistry, Physical

Reshaping the electrolyte structure and interface chemistry for stable aqueous zinc batteries

Guoqiang Ma et al.

Summary: In this study, the stability of metallic zinc anode in aqueous batteries was significantly improved by using a non-concentrated aqueous zinc trifluoromethanesulfonate electrolyte with 1,2-dimethoxyethane additive. The introduction of DME disrupted the original hydrogen-bond network of water and created a unique Zn2+-solvation structure, effectively suppressing water-induced side reactions. The in-situ formation of an organic-inorganic hybrid interphase on the zinc anode further prevented water penetration and dendrite growth. This novel electrolyte enabled the zinc anodes to achieve unprecedented cycling stability and high reversibility.

ENERGY STORAGE MATERIALS (2022)

Article Chemistry, Multidisciplinary

Boosting the Kinetics and Stability of Zn Anodes in Aqueous Electrolytes with Supramolecular Cyclodextrin Additives

Kang Zhao et al.

Summary: This study demonstrates the potential of cyclodextrins (CDs) as electrolyte additives for rechargeable Zn batteries. The addition of alpha-CD improves the stability and kinetics of Zn plating and stripping by adsorbing on the Zn surface and suppressing water-induced side reactions. This finding provides insight into the use of supramolecular macrocycles for enhancing the performance of aqueous battery chemistry.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2022)

Article Chemistry, Physical

Sulfamate-Derived Solid Electrolyte Interphase for Reversible Aqueous Zinc Battery

Xueer Xu et al.

Summary: By using an SEI-forming electrolyte based on zinc sulfamate, a stable anode/electrolyte interface can be achieved in aqueous zinc batteries, which suppresses parasitic reactions and allows for high Coulombic efficiency and long cycle life.

ACS ENERGY LETTERS (2022)

Article Chemistry, Physical

Highly stable aqueous zinc-ion batteries enabled by suppressing the dendrite and by-product formation in multifunctional Al3+ electrolyte additive

Xianlin Zhou et al.

Summary: Aqueous zinc-ion batteries (ZIBs) with a novel hybrid electrolyte and Al(3+) additive show efficient and stable reactions, suppressed side reactions, and strengthened crystal structure, delivering high capacity and cycling stability.

NANO RESEARCH (2022)

Article Chemistry, Physical

Ultrathin ZrO2 coating layer regulates Zn deposition and raises long-life performance of aqueous Zn batteries

Yu Liu et al.

Summary: In this study, a dense and ultrathin ZrO2 coating was deliberately designed on the zinc surface through atomic layer deposition (ALD), which enabled uniform zinc deposition, reduced the nucleation overpotential for zinc ion deposition, and effectively suppressed side reactions. This optimized the performance of zinc anode and achieved excellent cycling stability.

MATERIALS TODAY ENERGY (2022)

Article Chemistry, Multidisciplinary

Anion-Trap Engineering toward Remarkable Crystallographic Reorientation and Efficient Cation Migration of Zn Ion Batteries

Meijia Qiu et al.

Summary: By introducing beta-cyclodextrin as an anion-trap agent in zinc batteries, the deposition and migration behaviors of zinc anodes are improved, leading to enhanced stability and capacity.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2022)

Review Chemistry, Multidisciplinary

Artificial Interphase Layer for Stabilized Zn Anodes: Progress and Prospects

Qihui Zhang et al.

Summary: This review focuses on the latest research progress in the design of artificial interphase layers (AIL) for zinc anode protection, including the classification of functional materials, preparation methods, mechanism investigations, and device performances. The origins of zinc instability are explained from the perspectives of electrical field, mass transfer, and nucleation process, followed by a comprehensive summary of the functions and design criteria of AIL. Finally, current challenges and future outlooks are discussed based on theoretical and experimental considerations.
Article Electrochemistry

Toward dendrite-free and anti-corrosion Zn anodes by regulating a bismuth-based energizer

Mingming Wang et al.

Summary: This study constructs a Zn/Bi electrode by in-situ growth of a Bi-based energizer upon the Zn metal surface using a replacement reaction. Experimental and theoretical calculations demonstrate that the Bi-based energizer composed of metallic Bi and ZnBi alloy contributes significantly to Zn plating/stripping due to strong adsorption energy and fast ion transport rates. The Zn/Bi electrode not only avoids Zn dendrite growth but also improves Zn anode anti-corrosion performance.

ESCIENCE (2022)

Article Electrochemistry

Simultaneous regulation of cations and anions in an electrolyte for high-capacity, high-stability aqueous zinc-vanadium batteries

Ziqing Wang et al.

Summary: In this study, high-capacity and high-stability aqueous zinc-vanadium batteries were achieved by simultaneously regulating the ions in the electrolyte. Na+ cations suppressed cathode dissolution and restrained Zn dendrite growth, while ClO4- anions formed a protective layer to decrease Zn dendrites and H2 evolution. The battery exhibited durable performance during long-term cycling.

ESCIENCE (2022)

Review Chemistry, Multidisciplinary

Challenges and Strategies for High-Energy Aqueous Electrolyte Rechargeable Batteries

Huang Zhang et al.

Summary: Aqueous rechargeable batteries are becoming crucial for the development of renewable energy sources, as they offer improved energy density, cyclability, and safety through the use of advanced electrode materials and highly concentrated aqueous electrolytes. This review focuses on the advancements in constructing efficient aqueous battery systems with concentrated electrolytes, aiming to overcome existing hurdles and enhance the performance of lithium and post-lithium chemistry batteries.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Effects of Anion Carriers on Capacitance and Self-Discharge Behaviors of Zinc Ion Capacitors

Zhaodong Huang et al.

Summary: Research has shown that involving anions in the reaction process can improve the capacitance and anti-self-discharge ability of ion hybrid capacitors, leading to a stable energy storage mechanism.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Physical

Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries

Shan Guo et al.

Summary: Electrolyte additive is a key technology in energy storage, especially for aqueous zinc-ion batteries, but there is a lack of systematic research on its features and mechanisms. A comprehensive review on commonly used zinc-ion electrolyte additives is essential for further improvements in this field.

ENERGY STORAGE MATERIALS (2021)

Article Chemistry, Multidisciplinary

Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low-Cost Antisolvents

Junnan Hao et al.

Summary: A similar antisolvent strategy has been used to enhance Zn reversibility and suppress dendrite growth in Zn plating/stripping, with promising results shown in 50% methanol electrolyte. This low-cost strategy can be easily applied to other solvents, demonstrating practical universality and potential for enhancing performance in electrochemistry and energy storage research.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Physical

Mechanism for Zincophilic Sites on Zinc-Metal Anode Hosts in Aqueous Batteries

Fangxi Xie et al.

Summary: The bonding between zinc ions and zincophilic sites is revealed as the mechanism for suppressing zinc-dendrite formation in the ZMA host, leading to enhanced electrochemical performance. This study highlights the importance of nitrogen zincophilic sites in inhibiting zinc-dendrite growth.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Multidisciplinary

Toward Practical High-Areal-Capacity Aqueous Zinc-Metal Batteries: Quantifying Hydrogen Evolution and a Solid-Ion Conductor for Stable Zinc Anodes

Longtao Ma et al.

Summary: By using a ZnF2 solid ion conductor to isolate Zn metal, the hydrogen evolution in Zn metal batteries has been significantly reduced, leading to improved performance and stability of the batteries.

ADVANCED MATERIALS (2021)

Review Chemistry, Physical

Recent Developments and Future Prospects for Zinc-Ion Hybrid Capacitors: a Review

Heng Tang et al.

Summary: This critical review comprehensively summarizes the fundamentals and recent advances of zinc-ion hybrid capacitors (ZICs), including their compositions, energy storage mechanisms, advantages and disadvantages, as well as future research directions. It is expected to provide guidance for the design and exploitation of high-performance ZICs for potential practical applications.

ADVANCED ENERGY MATERIALS (2021)

Article Nanoscience & Nanotechnology

Fluorinated interphase enables reversible aqueous zinc battery chemistries

Longsheng Cao et al.

Summary: The study introduces an aqueous zinc battery with a solid-electrolyte interphase that enables excellent performance in various tests, demonstrating its potential for practical applications in energy storage.

NATURE NANOTECHNOLOGY (2021)

Article Chemistry, Multidisciplinary

Scalable and Controllable Synthesis of Interface-Engineered Nanoporous Host for Dendrite-Free and High Rate Zinc Metal Batteries

Yongling An et al.

Summary: Rechargeable zinc-ion batteries are promising candidates for renewable and safe energy storage systems, but uncontrolled dendrite growth of the zinc anode has been a hindrance. This study developed a scalable and controllable approach to convert commercial titanium foil into 3D porous titanium, which effectively inhibits dendritic growth and ensures stable zinc plating/stripping. The 3D porous titanium also demonstrates good resistance to corrosion, high electrical conductivity, and excellent mechanical properties.

ACS NANO (2021)

Article Chemistry, Multidisciplinary

Tuning the Electrolyte Solvation Structure to Suppress Cathode Dissolution, Water Reactivity, and Zn Dendrite Growth in Zinc-Ion Batteries

Sailin Liu et al.

Summary: By tuning the solvation structure of the electrolyte and using fire-retardant triethyl phosphate as a cosolvent, the challenges of cathode dissolution, water reactivity, and zinc dendrites in aqueous zinc-ion batteries have been successfully addressed. The optimized electrolyte structure leads to high average Coulombic efficiency in Zn/Cu cells and enables over 1000 cycles at high current density.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Stabilizing Zinc Anodes by Regulating the Electrical Double Layer with Saccharin Anions

Cong Huang et al.

Summary: The research shows that saccharin (Sac) as an electrolyte additive can regulate the electrical double layer (EDL) structure on the zinc anode, forming a unique solid electrolyte interphase (SEI) that effectively modulates zinc deposition behavior and prevents side reactions, thus improving battery performance.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

Designing Anion-Type Water-Free Zn2+ Solvation Structure for Robust Zn Metal Anode

Qiu Zhang et al.

Summary: The study introduces a novel electrolyte design strategy to transform Zn(H2O)(6)(2+) into ZnCl42-, which suppresses the dendritic growth and interface hydrogen evolution reaction in Zn batteries. This approach enables uniform Zn deposition and high Coulombic efficiency, leading to long lifespan metal anode batteries.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Physical

A Thin and Uniform Fluoride-Based Artificial Interphase for the Zinc Metal Anode Enabling Reversible Zn/MnO2 Batteries

Jin Han et al.

Summary: By developing an artificial ZnF2 layer on the surface of Zn metal anode, researchers have successfully addressed the limitation of zinc batteries' lifespan. This artificial layer suppresses dendrite growth and facilitates zinc insertion and transport through an interstitial diffusion mechanism. This improvement has been demonstrated by the long-term cycling and high capacity retention achieved by zinc-zincF2/MnO2 full cells.

ACS ENERGY LETTERS (2021)

Article Chemistry, Physical

A rechargeable aqueous zinc/sodium manganese oxides battery with robust performance enabled by Na2SO4 electrolyte additive

Yongtai Xu et al.

Summary: The article introduces a new type of zinc/sodium manganese oxides battery, which improves structure by pre-inserting Na+ ions and crystal water in the cathode interlayer, and eliminates zinc dendrites by adding Na2SO4 in the electrolyte, achieving high capacity and long-term cyclic stability.

ENERGY STORAGE MATERIALS (2021)

Review Chemistry, Multidisciplinary

Assessment and progress of polyanionic cathodes in aqueous sodium batteries

Huang Zhang et al.

Summary: This article provides an assessment of polyanion-type compounds as potential positive electrode materials for aqueous sodium-ion batteries, highlighting the importance of electrolyte regulation and cell design in addressing compatibility issues and making aqueous sodium batteries advantageous over non-aqueous systems. The challenges and research directions for incorporating polyanionic compounds in the development of high energy aqueous batteries for grid-scale applications are also discussed.

ENERGY & ENVIRONMENTAL SCIENCE (2021)

Review Chemistry, Physical

Micronanostructured Design of Dendrite-Free Zinc Anodes and Their Applications in Aqueous Zinc-Based Rechargeable Batteries

Bing-Feng Cui et al.

Summary: Aqueous zinc-based rechargeable batteries are promising due to their low cost, high safety, environmental friendliness, and high energy density, but the formation of zinc dendrites poses serious problems. Understanding the growth process of dendrites and suppressing their formation through strategies like micronanostructured design can help advance the development of high-performance dendrite-free zinc anodes.

SMALL STRUCTURES (2021)

Article Chemistry, Multidisciplinary

Non-concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries†‡

Yang Dong et al.

Summary: This study presents a non-concentrated aqueous electrolyte composed of 2m zinc trifluoromethanesulfonate and the organic dimethyl carbonate additive, which can stabilize the zinc electrochemistry and improve the coulombic efficiency of the zinc anode. Furthermore, this electrolyte can sustain stable operation of rechargeable aqueous zinc batteries when paired with various cathode materials. Rational electrolyte design with organic solvent additives could lead to the development of better aqueous batteries.

CHEMICAL SCIENCE (2021)

Review Chemistry, Multidisciplinary

Interfacial Design of Dendrite-Free Zinc Anodes for Aqueous Zinc-Ion Batteries

Qi Zhang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Chemistry, Multidisciplinary

Solvation Structure Design for Aqueous Zn Metal Batteries

Longsheng Cao et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Review Chemistry, Multidisciplinary

Tutorial review on structure - dendrite growth relations in metal battery anode supports

Wei Liu et al.

CHEMICAL SOCIETY REVIEWS (2020)

Review Energy & Fuels

Advances and issues in developing salt-concentrated battery electrolytes

Yuki Yamada et al.

NATURE ENERGY (2019)

Article Nanoscience & Nanotechnology

Oxide versus Nonoxide Cathode Materials for Aqueous Zn Batteries: An Insight into the Charge Storage Mechanism and Consequences Thereof

Pascal Oberholzer et al.

ACS APPLIED MATERIALS & INTERFACES (2019)

Article Multidisciplinary Sciences

Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes

Lulu Wang et al.

SCIENCE ADVANCES (2019)

Article Chemistry, Physical

An Interconnected Channel-Like Framework as Host for Lithium Metal Composite Anodes

Hansen Wang et al.

ADVANCED ENERGY MATERIALS (2019)

Review Chemistry, Multidisciplinary

Issues and opportunities facing aqueous zinc-ion batteries

Boya Tang et al.

ENERGY & ENVIRONMENTAL SCIENCE (2019)

Article Chemistry, Multidisciplinary

Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase

Zhiming Zhao et al.

ENERGY & ENVIRONMENTAL SCIENCE (2019)

Article Chemistry, Physical

Ionic liquid as an electrolyte additive for high performance lead-acid batteries

M. A. Deyab

JOURNAL OF POWER SOURCES (2018)

Article Chemistry, Physical

Highly reversible zinc metal anode for aqueous batteries

Fei Wang et al.

NATURE MATERIALS (2018)

Review Electrochemistry

Review-SEI: Past, Present and Future

E. Peled et al.

JOURNAL OF THE ELECTROCHEMICAL SOCIETY (2017)

Article Electrochemistry

Ionic Liquid as an Effective Additive for Rechargeable Magnesium Batteries

Baofei Pan et al.

JOURNAL OF THE ELECTROCHEMICAL SOCIETY (2017)

Article Chemistry, Multidisciplinary

Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal

Allen Pei et al.

NANO LETTERS (2017)

Article Electrochemistry

Suppressing Dendrite Growth during Zinc Electrodeposition by PEG-200 Additive

Stephen J. Banik et al.

JOURNAL OF THE ELECTROCHEMICAL SOCIETY (2013)

Article Chemistry, Physical

Molecular Dynamics Study of Polysaccharides in Binary Solvent Mixtures of an Ionic Liquid and Water

Hanbin Liu et al.

JOURNAL OF PHYSICAL CHEMISTRY B (2011)

Article Chemistry, Physical

Signatures of the hydrogen bonding in the infrared bands of water

JB Brubach et al.

JOURNAL OF CHEMICAL PHYSICS (2005)

Article Chemistry, Physical

Dependence of water dynamics upon confinement size

JB Brubach et al.

JOURNAL OF PHYSICAL CHEMISTRY B (2001)