4.6 Article

Competitive Solvation-Induced Interphases Enable Highly Reversible Zn Anodes

期刊

ACS ENERGY LETTERS
卷 8, 期 5, 页码 2086-2096

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsenergylett.3c00650

关键词

-

向作者/读者索取更多资源

Methylammonium acetate was found to enhance the reversibility and stability of the Zn anode as an electrolyte additive. Acetate anions competitively engage the Zn2+ solvation structure, reducing water reactivity and promoting anion-enriched electrolyte structure, which effectively suppresses byproducts and dendrite formation. The formation of an anion-derived, robust solid electrolyte interphase with an inorganic/organic hybrid structure enables improved cycling performance in Zn||Na3V2(PO4)(3) batteries and Zn||activated carbon capacitors.
Aqueous Zn-metal batteries have been recognized as promising energy storage devices due to their high theoretical energy density and cost-effectiveness. However, side reactions and Zn dendrite growth during cycling limit their practical application. Herein, we investigated methylammonium acetate as an electrolyte additive to enhance the reversibility and stability of the Zn anode. The results revealed that the acetate anions would competitively engage the Zn2+ solvation structure to reduce the water reactivity and promote the anion-enriched structure in the electrolyte, which can efficiently suppress the byproducts and dendrite formation. These occurs thanks to the formation of an anion-derived, robust solid electrolyte interphase with an inorganic/organic hybrid structure. Such an electrolyte enables a long cycle life over 2000 h in the Zn||Zn cell and a high Coulombic efficiency of >99.5% for 700 cycles in the Zn||Ti cell. Therefore, both Zn||Na3V2(PO4)(3) batteries and Zn||activated carbon capacitors in this electrolyte exhibit improved cycling performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据