4.6 Article

Impact of Compressibility on the Control of Bubble-Pressure Tensiometers

期刊

LANGMUIR
卷 32, 期 46, 页码 12031-12038

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.6b03258

关键词

-

资金

  1. National Science Foundation [CBET-1435683]

向作者/读者索取更多资源

An experimental and theoretical investigation is conducted to understand the role of compressibility on the quasi-static expansion and contraction of a bubble that is pinned at the opening of a small capillary. The results show that there are two regimes of expansion and contraction depending on the values of two dimensionless parameters which correspond to a dimensionless volume and maximum capillary pressure. In one regime, not all bubble sizes are accessible during expansion and contraction, and the bubbles exhibit a hysteretic behavior when cycling through expansion and contraction. We call this the bubble shape hysteresis. The magnitude of the bubble shape hysteresis is computed for a realistic range of the nondimensional parameters. In the other regime, the bubble size can be varied continuously, but compressibility can still make it difficult to smoothly control the size of the bubble. The theoretical analysis shows that compressibility affects the evolution of the bubbles, even when the bubble is smaller than a hemispherical cap. The analysis also provides the infusion and withdrawal rates that a syringe pump must supply to expand and contract the bubble at a desired rate, accounting for compressibility. The validity of the assumptions used in the model is verified by comparison against experimental data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据