4.7 Article

Feasibility of using graphene as a substitute to graphite in the laser surface hardening of ferritic stainless steel

期刊

出版社

ELSEVIER
DOI: 10.1016/j.jmrt.2023.02.004

关键词

Laser surface hardening; Graphene; Graphite slurry; Surface alloying; Molecular dynamic; Ferritic stainless steel

向作者/读者索取更多资源

This study compares the stability of graphene, graphite, and their slurries in the laser surface hardening process. The results show that under suitable process conditions, graphene exhibits high hardness and low stress fluctuation, without crack formation at the interface. Additionally, adjusting the powder layer thickness and laser power can maximize the aspect ratio and microhardness near the interface.
The broad potential applications of ferritic stainless steel in industry can be increased with the addition of protective elements such as carbon for surface hardening. Laser surface hardening (LSH) using carbon elements, such as graphite, has received widespread attention. However, to obtain high quality results, the use of graphite slurry, a specific environment, or remelting are required. To overcome this challenge, the LSH using gra-phene as an alternative to graphite was comparatively studied in this work. Accordingly, the stability of hardened layers, which depicts their sustainability in actual environmental conditions, was compared in graphene, graphite, and their slurries to improve the evalu-ation of graphene in the LSH process. The stability of hardened layers predominantly de-pends on the hardness, crack susceptibility, interfacial stress, hardness depth (or aspect ratio), and interfacial hardness. Under suitable process conditions, graphene exhibits good stability, with the highest hardness and low stress fluctuation without crack formation at the interface. Moreover, the powder layer thickness and laser power can be adjusted to achieve maximum improvements in the aspect ratio and microhardness in the area near the interface. Thus, high microhardness and a crack-free hardened layer without addi-tional remelting or the use of a slurry were obtained.(c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据