4.6 Article

Colloidal Jamming Dynamics in Microchannel Bottlenecks

期刊

LANGMUIR
卷 32, 期 6, 页码 1478-1488

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.5b04218

关键词

-

资金

  1. Education, Audio-visual and Culture Executive Agency (EACEA) division of the European Union under the program of EUDIME (European Doctorate in Membrane Engineering) grant

向作者/读者索取更多资源

The purpose of this work is to examine the interplay between hydrodynamic conditions and physicochemical interactions from filtration experiments of microparticles. Experiments are performed in microfluidic filters with real-time visualization at pore scale. Both flow rate and pressure are measured with time to analyze the dynamics of pore clogging and permeability. Flux stepping experiments are performed at different physicochemical conditions to determine the different clogging conditions. The results allow distinguishing different clogging behaviors according to filtration conditions which are discussed by considering particle particle and particle wall colloidal interactions whose main characteristics are an important repulsive barrier at 0.01 mM, a significant secondary minimum at 10 mM, and low repulsive barrier at 100 mM. Clogging delay, at moderate ionic strength and deposit fragility and associated sweeping out of aggregates of particles at high ionic strength are discussed from the deposit structure, specific resistance, and deposit relaxation analyses. It has also been observed that an opening angle at microchannel entrance causes rapid clogging, this effect being more pronounced when the repulsion is partially screened. Three different scenarios are discussed by analogy to crowd swarming: panic scenario (0.01 mM) where repulsion between particles induce pushing effects leading to the creation of robust arches at pore entrances; herding instinct scenario (10 mM) where the attraction (in secondary minima) between particles enhances the transport in pores and delays clogging; and sacrifice scenario (100 mM) where the capture efficiency is high but the aggregate formed at the wall is fragile.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据