4.7 Article

Cooperative Resource Allocation Based on Soft Actor-Critic With Data Augmentation in Cellular Network

期刊

IEEE WIRELESS COMMUNICATIONS LETTERS
卷 12, 期 3, 页码 396-400

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/LWC.2022.3227033

关键词

Cooperative resource allocation; deep reinforcement learning; soft actor-critic

向作者/读者索取更多资源

This letter investigates the cooperative resource allocation of cellular networks with simultaneous wireless information and power transfer in the time-varying channel environment. The soft actor-critic (SAC) algorithm is exploited to tackle the optimization problem which aims to find a feasible resource allocation policy to maximize the data rate and system fairness while minimizing the channel switching penalty. Considering the costly agent-to-environment interactions and the restricted empirical dataset of the SAC algorithm, this letter explores the permutation equivalence of the optimization objective, and designs two data augmentation schemes for the experience replay buffer of SAC. The cumulative discount reward shows that data augmentation assisted algorithms outperform the baseline in the learning speed. The simulation results referring to the average data rate and system fairness show that the proposed schemes benefit to the training model and effectively improve the performance of algorithms.
This letter investigates the cooperative resource allocation of cellular networks with simultaneous wireless information and power transfer in the time-varying channel environment. The soft actor-critic (SAC) algorithm is exploited to tackle the optimization problem which aims to find a feasible resource allocation policy to maximize the data rate and system fairness while minimizing the channel switching penalty. Considering the costly agent-to-environment interactions and the restricted empirical dataset of the SAC algorithm, this letter explores the permutation equivalence of the optimization objective, and designs two data augmentation schemes for the experience replay buffer of SAC. The cumulative discount reward shows that data augmentation assisted algorithms outperform the baseline in the learning speed. The simulation results referring to the average data rate and system fairness show that the proposed schemes benefit to the training model and effectively improve the performance of algorithms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据