4.6 Article

Structural Evolution of Wormlike Micellar Fluids Formed by Erucyl Amidopropyl Betaine with Oil, Salts, and Surfactants

期刊

LANGMUIR
卷 32, 期 47, 页码 12423-12433

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.6b01735

关键词

-

资金

  1. Department of Education of the Australian Government
  2. NSF [DMR-0520547]

向作者/读者索取更多资源

Solutions of extended, flexible cylindrical micelles, often known as wormlike micelles, have great potential as the base for viscoelastic complex fluids in oil recovery, drilling, and lubrication. Here, we study the morphology and nanostructural characteristics of a model wormlike micellar fluid formed from erucyl amidopropyl betaine (EAPB) in water as a function of a diverse range of additives relevant to complex fluid formulation. The wormlike micellar dispersions are extremely oleo responsive, with even as little as 0.1% hydrocarbon oil causing a significant disruption of the network and a decrease in zero-shear viscosity of around 100-fold. Simple salts have little effect on the local structure of the wormlike micelles but result in the formation of fractal networks at larger length scales, whereas even tiny amounts of small organic species such as phenol can cause unexpected phase transitions. When forming mixtures with other surfactants, a vast array of self-assembled structures are formed, from spheres to ellipsoids, lamellae, and vesicles, offering the ultimate sensitivity in designing formulations with specific nanostructural characteristics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据