4.6 Article

Effect of PEG Grafting Density and Hydrodynamic Volume on Gold Nanoparticle-Cell Interactions: An Investigation on Cell Cycle, Apoptosis, and DNA Damage

期刊

LANGMUIR
卷 32, 期 23, 页码 5997-6009

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.6b01289

关键词

-

资金

  1. Izmir Institute of Technology [2011IYTE10]

向作者/读者索取更多资源

In this study, interactions of polyethylene glycol (PEG)-coated gold nanoparticles (AuNPs) with cells were investigated with particular focus on the relationship between the PEG layer properties (conformation, grafting density, and hydrodynamic volume) and cell cycle arrest, apoptosis, and DNA damage. Steric hindrance and PEG hydrodynamic volume controlled the protein adsorption, whereas the AuNP core size and PEG hydrodynamic volume were primary factors for cell uptake and viability. At all PEG grafting densities, the particles caused significant cell cycle arrest and DNA damage against CaCo2 and PC3 cells without apoptosis. However, at a particular PEG grafting density (similar to 0.65 chains/nm(2)), none of these severe damages were observed on 3T3 cells indicating discriminating behavior of the healthy (3T3) and cancer (PC3 and CaCo2) cells. It was concluded that the PEG grafting density and hydrodynamic volume, tuned with the PEG concentration and AuNP size, played an important role in particle-cell interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据