4.7 Article

Revisiting Interior Water Mass Responses to Surface Forcing Changes and the Subsequent Effects on Overturning in the Southern Ocean

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2022JC019105

关键词

southern ocean; freshwater; Antarctica; abyssal circulation; meridional overturning circulation; coupled models

向作者/读者索取更多资源

Two different climate models have been used to study the impact of wind stress and Antarctic ice sheet melting on the Southern Ocean meridional overturning circulation (SO MOC). The study shows that the largest impact is found in the lower limb of the SO MOC, associated with the formation of Antarctic Bottom Water (AABW), which is enhanced by wind and weakened by AIS meltwater perturbations. Both models indicate a reduction in AABW transport due to AIS melting, however, the higher resolution simulation shows a greater volume deflation of AABW south of 30°S.
Two coupled climate models, differing primarily in horizontal resolution and treatment of mesoscale eddies, were used to assess the impact of perturbations in wind stress and Antarctic ice sheet (AIS) melting on the Southern Ocean meridional overturning circulation (SO MOC), which plays an important role in global climate regulation. The largest impact is found in the SO MOC lower limb, associated with the formation of Antarctic Bottom Water (AABW), which in both models is enhanced by wind and weakened by AIS meltwater perturbations. Even though both models under the AIS melting perturbation show similar AABW transport reductions of 4-5 Sv (50%-60%), the volume deflation of AABW south of 30 & DEG;S is four times greater in the higher resolution simulation (-20 vs. -5 Sv). Water mass transformation (WMT) analysis reveals that surface-forced dense water formation on the Antarctic shelf is absent in the higher resolution and reduced by half in the lower resolution model in response to the increased AIS melting. However, the decline of the AABW volume (and its inter-model difference) far exceeds the surface-forced WMT changes alone, which indicates that the divergent model responses arise from interactions between changes in surface forcing and interior mixing processes. This model divergence demonstrates an important source of uncertainty in climate modeling, and indicates that accurate shelf processes together with scenarios accounting for AIS melting are necessary for robust projections of the deep ocean's response to anthropogenic forcing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据