4.6 Article

Effect of Nanoclustering and Dipolar Interactions in Heat Generation for Magnetic Hyperthermia

期刊

LANGMUIR
卷 32, 期 5, 页码 1201-1213

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.5b03559

关键词

-

资金

  1. CONICET
  2. UNLP of Argentina [PIP 0720, X11/680]
  3. European Union from the Spanish Ministry of Economy and Competitiveness [262943, 60448, MAT2014-52069-R]

向作者/读者索取更多资源

Biomedical magnetic colloids commonly used in magnetic hyperthermia experiments often display a bidisperse structure, Le., are composed of stable nanoclusters coexisting with well-dispersed nanoparticles. However, the influence of nanoclusters in the optimization of colloids for heat dissipation is usually excluded. In this work, bidisperse colloids are used to analyze: the effect of nanoclustering and long-range magnetic dipolar interaction on the magnetic hypertherffiia efficiency. Two kinds of colloids, composed of magnetite cores with mean sizes of around 10 and 18 nm, coated with oleic acid and dispersed: in hexane, and coated with meSo-2,3-ilimercaptosuccinic acid and dispersed in water, were analyzed. Small-angle X-ray scattering was applied to thoroughly,characterize nanoparticle structuring. We proved that the magnetic hyperthermia performances of nanoclusters and Single nanoparticles are distinctive. Nanoclustering acts to reduce the specific heating efficiency whereas a peak against concentration appears for thewell-dispersed component. Our experiments show that the heating efficiency of a magnetic colloid can increase or decrease when dipolar interactions increase and that the colloid concentration, i.e., dipolar interaction, can be used to improve magnetic hyperthermia. We have proven that the power dissipated by an ensemble of dispersed magnetic nanoparticles becomes a nonextensive property as a direct consequence of the long-range nature of dipolar interactions. This knowledge is a key point in selecting the correct dose that has to be injected to achieve the desired outcome in intracellular magnetic hyperthermia therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据