4.6 Article

A Comparative Study of the Influence of Sugars Sucrose, Trehalose, and Maltose on the Hydration and Diffusion of DMPC Lipid Bilayer at Complete Hydration: Investigation of Structural and Spectroscopic Aspect of Lipid-Sugar Interaction

期刊

LANGMUIR
卷 32, 期 20, 页码 5124-5134

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.6b01115

关键词

-

资金

  1. SERB
  2. Department of Science and Technology (DST)
  3. Council of Scientific and Industrial Research (CSIR), Government of India
  4. CSIR
  5. IIT Kharagpur

向作者/读者索取更多资源

It is well-known that sugars protect membrane structures against fusion and leakage. Here, we have investigated the interaction between different sugars (sucrose, trehalose, and maltose) and phospholipid membrane of 1,2-dimyristoyl-sn-glycero-3-phoshpocholine (DMPC) using dynamic light scattering (DLS), transmission electron microscopy (TEM), and other various spectroscopic techniques. DLS measurement reveals that the addition of sugar molecule results a significant increase of the average diameter of DMPC membrane. We have also noticed that in the presence of different sugars the rotational relaxation and solvation time of coumarin 480 (C480) and coumarin 153 (C153) surrounding DMPC membrane increases, suggesting a marked reduction of the hydration behavior at the surface of phospholipid membrane. In addition, we have also investigated the effect of sugar molecules on the lateral mobility of phospholipids. Interestingly, the relative increase in rotational, solvation and lateral diffusion is more prominent for C480 than that of C153 because of their different location in lipid bilayer. It is because of preferential location of comparatively hydrophilic probe C480 in the interfacial region of the lipid bilayer. Sugars intercalate with the phospholipid headgroup through hydrogen bonding and replace smaller sized water molecules from the membrane surface. Therefore, overall, we have monitored a comparative analysis regarding the interaction of different sugar molecules (sucrose, trehalose, and maltose) with the DMPC membrane through DLS, TEM, solvation dynamics, time-resolved anisotropy, and fluorescence correlation spectroscopy (FCS) measurements to explore the structural and spectroscopic aspect of lipid sugar interaction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据