4.7 Review

Cellular dynamics of distinct skeletal cells and the development of osteosarcoma

期刊

FRONTIERS IN ENDOCRINOLOGY
卷 14, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fendo.2023.1181204

关键词

osteosarcoma (OS); skeletal stem cells (SSCs); endosteal stem cells; cancer initiating cells; skeletal stem and progenitor cells (SSPCs); bone marrow mesenchymal stem; stromal cells (BM-MSCs); single-cell RNA sequencing (scRNA-seq); lineage-tracing

向作者/读者索取更多资源

This mini-review discusses the cellular diversity and dynamics of multiple skeletal cell types and the origin of osteosarcoma (OS). It has been found that skeletal stem cells (SSCs) in the bone marrow endoskeletal region efficiently generate OS and are the cells of origin under p53 deletion conditions. The study also highlights future challenges in the research of skeletal cells and OS.
Bone contributes to the maintenance of vital biological activities. At the cellular level, multiple types of skeletal cells, including skeletal stem and progenitor cells (SSPCs), osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, orchestrate skeletal events such as development, aging, regeneration, and tumorigenesis. Osteosarcoma (OS) is a primary malignant tumor and the main form of bone cancer. Although it has been proposed that the cellular origins of OS are in osteogenesis-related skeletal lineage cells with cancer suppressor gene mutations, its origins have not yet been fully elucidated because of a poor understanding of whole skeletal cell diversity and dynamics. Over the past decade, the advent and development of single-cell RNA sequencing analyses and mouse lineage-tracing approaches have revealed the diversity of skeletal stem and its lineage cells. Skeletal stem cells (SSCs) in the bone marrow endoskeletal region have now been found to efficiently generate OS and to be robust cells of origin under p53 deletion conditions. The identification of SSCs may lead to a more limited redefinition of bone marrow mesenchymal stem/stromal cells (BM-MSCs), and this population has been thought to contain cells from which OS originates. In this mini-review, we discuss the cellular diversity and dynamics of multiple skeletal cell types and the origin of OS in the native in vivo environment in mice. We also discuss future challenges in the study of skeletal cells and OS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据