4.6 Article

Transcriptome profiling of flax plants exposed to a low-frequency alternating electromagnetic field

期刊

FRONTIERS IN GENETICS
卷 14, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fgene.2023.1205469

关键词

electromagnetic field; flax; antioxidants; stress; transcriptome; RNA-seq

向作者/读者索取更多资源

All living organisms are adapted to and utilize the electromagnetic field (EMF) of the Earth. However, the development of electricity and electronics in the last century introduced new EMF sources. Previous research suggested that EMF affects cellular homeostasis and gene expression in plants. This study aims to identify the genes involved in the plant response to EMF and understand the mechanisms behind it.
All living organisms on Earth evolved in the presence of an electromagnetic field (EMF), adapted to the environment of EMF, and even learned to utilize it for their purposes. However, during the last century, the Earth's core lost its exclusivity, and many EMF sources appeared due to the development of electricity and electronics. Previous research suggested that the EMF led to changes in intercellular free radical homeostasis and further altered the expression of genes involved in plant response to environmental stresses, inorganic ion transport, and cell wall constituent biosynthesis. Later, CTCT sequence motifs in gene promoters were proposed to be responsible for the response to EMF. How these motifs or different mechanisms are involved in the plant reaction to external EMF remains unknown. Moreover, as many genes activated under EMF treatment do not have the CTCT repeats in their promoters, we aimed to determine the transcription profile of a plant exposed to an EMF and identify the genes that are directly involved in response to the treatment to find the common denominator of the observed changes in the plant transcriptome.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据