4.7 Article

Transmon qubit readout fidelity at the threshold for quantum error correction without a quantum-limited amplifier

期刊

NPJ QUANTUM INFORMATION
卷 9, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41534-023-00689-6

关键词

-

向作者/读者索取更多资源

High-fidelity and rapid readout of qubit state is crucial for quantum computing and communication, and a prerequisite for quantum error correction. We propose a readout scheme for superconducting qubits that combines a shelving technique and two-tone excitation of the readout resonator. Using a machine-learning algorithm to post-process the measurement results further improves the fidelity of qubit-state assignment. We demonstrate single-shot frequency-multiplexed qubit readout with a 140 ns readout time and achieve high assignment fidelity without using a quantum-limited amplifier.
High-fidelity and rapid readout of a qubit state is key to quantum computing and communication, and it is a prerequisite for quantum error correction. We present a readout scheme for superconducting qubits that combines two microwave techniques: applying a shelving technique to the qubit that reduces the contribution of decay error during readout, and a two-tone excitation of the readout resonator to distinguish among qubit populations in higher energy levels. Using a machine-learning algorithm to post-process the two-tone measurement results further improves the qubit-state assignment fidelity. We perform single-shot frequency-multiplexed qubit readout, with a 140 ns readout time, and demonstrate 99.5% assignment fidelity for two-state readout and 96.9% for three-state readout-without using a quantum-limited amplifier.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据