4.5 Article

Estimating Daily NO2 Ground Level Concentrations Using Sentinel-5P and Ground Sensor Meteorological Measurements

出版社

MDPI
DOI: 10.3390/ijgi12030107

关键词

atmospheric pollution; nitrogen dioxide; machine learning

向作者/读者索取更多资源

The increasing presence of air pollutants has led to environmental and health deterioration, causing a pressing concern for governments and organizations. To combat the decreased air quality, it is crucial for environmental agencies to measure trace gas atmospheric concentrations. This study aims to estimate ground NO2 by combining ground meteorological measurements with satellite observations using state-of-the-art Machine Learning models and feature selection algorithms.
Environmental and health deterioration due to the increasing presence of air pollutants is a pressing topic for governments and organizations. Institutions such as the European Environment Agency have determined that more than 350,000 premature deaths can be attributed to atmospheric pollutants. The measurement of trace gas atmospheric concentrations is key for environmental agencies to fight against the decreased deterioration of air quality. NO2, which is one of the most harmful pollutants, has the potential to cause diseases such as Chronic Obstructive Pulmonary Disease (COPD). Unfortunately, not all countries have local atmospheric pollutant monitoring networks to perform ground measurements (especially Low- and Middle-Income Countries). Although some alternatives, such as satellite technologies, provide a good approximation for tropospheric NO2, these do not measure concentrations at the ground level. In this work, we aim to provide an alternative to ground sensor measurements. We used a combination of ground meteorological measurements with satellite Sentinel-5P observations to estimate ground NO2. For this task, we used state-of-the-art Machine Learning models, linear regression models, and feature selection algorithms. From the results obtained, we found that a Multi-layer Perceptron Regressor and Kriging in combination with a Random Forest feature selection algorithm achieved the lowest RMSE (2.89 mu g/m(3)). This result, in comparison with the real data standard deviation and the models using only satellite data, represented an RMSE decrease of 55%. Future work will focus on replacing the use of meteorological ground sensors with only satellite-based data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据