4.8 Article

Serum amyloid A proteins reduce bone mass during mycobacterial infections

期刊

FRONTIERS IN IMMUNOLOGY
卷 14, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fimmu.2023.1168607

关键词

inflammation; bone loss; mycobacteria; tuberculosis; SAA

向作者/读者索取更多资源

Infection with Mycobacterium avium impacts bone turnover by decreasing bone formation and increasing bone resorption in an IFN gamma- and TNF alpha-dependent manner. Increased serum amyloid A (SAA) levels in active tuberculosis patients correlate with altered serum bone turnover markers. Additionally, human SAA proteins impair bone matrix deposition and increase osteoclastogenesis in vitro. These findings improve understanding of mechanisms of bone loss during infection and identify SAA proteins as potential biomarkers.
IntroductionOsteopenia has been associated to several inflammatory conditions, including mycobacterial infections. How mycobacteria cause bone loss remains elusive, but direct bone infection may not be required. MethodsGenetically engineered mice and morphometric, transcriptomic, and functional analyses were used. Additionally, inflammatory mediators and bone turnover markers were measured in the serum of healthy controls, individuals with latent tuberculosis and patients with active tuberculosis. Results and discussionWe found that infection with Mycobacterium avium impacts bone turnover by decreasing bone formation and increasing bone resorption, in an IFN gamma- and TNF alpha-dependent manner. IFN gamma produced during infection enhanced macrophage TNF alpha secretion, which in turn increased the production of serum amyloid A (SAA) 3. Saa3 expression was upregulated in the bone of both M. avium- and M. tuberculosis-infected mice and SAA1 and 2 proteins (that share a high homology with murine SAA3 protein) were increased in the serum of patients with active tuberculosis. Furthermore, the increased SAA levels seen in active tuberculosis patients correlated with altered serum bone turnover markers. Additionally, human SAA proteins impaired bone matrix deposition and increased osteoclastogenesis in vitro. Overall, we report a novel crosstalk between the cytokine-SAA network operating in macrophages and bone homeostasis. These findings contribute to a better understanding of the mechanisms of bone loss during infection and open the way to pharmacological intervention. Additionally, our data and disclose SAA proteins as potential biomarkers of bone loss during infection by mycobacteria.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据