4.6 Article

Improving Oxygen Electrochemistry through Nanoscopic Confinement

期刊

CHEMCATCHEM
卷 7, 期 5, 页码 738-742

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cctc.201402864

关键词

density functional calculations; electrochemistry; electrolysis; oxygen; scaling relationships

资金

  1. Center of Nanostructuring for Efficient Energy Conversion (CNEEC) at Stanford University, an Energy Frontier Research Center - U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0001060]
  2. U.S. Department of Energy Office of Basic Science
  3. SLAC National Accelerator Lab LDRD program

向作者/读者索取更多资源

Oxygen evolution and reduction offer a promising method of grid-level energy storage that could facilitate widespread adaptation of solar and wind power. However, the efficiency of these technologies is fundamentally limited by high overpotentials, which stem from correlations between adsorption energies of different reaction intermediates. We propose a scheme to circumvent these scaling relationships by defining a three-dimensional nanoscopic catalyst structure that capitalizes on different interactions between the intermediates and the catalyst owing to confinement. These nanoscopic channels reduce the theoretical overpotential for oxygen evolution on RuO2 by over 200 mV, corresponding to a 10% increase in theoretical catalyst efficiency compared with a two-dimensional RuO2 surface. This approach may hold promise for other oxygen-evolution catalysts or, more broadly, to other reactions limited by (intermediate) adsorption-energy scaling relationships.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据