4.7 Article

A model heterostructure with engineered Berry curvature

期刊

APL MATERIALS
卷 11, 期 6, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0151126

关键词

-

向作者/读者索取更多资源

Molecular-beam epitaxy enables the combination of ultrathin functional materials to create emergent phenomena at the interface. In this study, a model heterostructure with engineered Berry curvature is synthesized to reproduce a hump-like feature, commonly attributed to the presence of skyrmions. However, despite the clear hump, no evidence of skyrmions is found.
Molecular-beam epitaxy enables ultrathin functional materials to be combined in heterostructures to create emergent phenomena at the interface. Magnetic skyrmions are an example of an exciting phase found in such heterostructures. SrRuO3 and SrRuO3-based heterostructures have been at the center of the debate on whether a hump-like feature appearing in Hall resistivities is sufficient evidence to prove the presence of skyrmions in a material. To address the ambiguity, we synthesize a model heterostructure with engineered Berry curvature that combines, in parallel, a positive anomalous Hall effect (AHE) channel (a Sr0.6Ca0.4RuO3 layer) with a negative AHE channel (a SrRuO3 layer). We demonstrate that the two opposite AHE channels can be combined to artificially reproduce a hump-like feature, which closely resembles the hump-like feature typically attributed to the topological Hall effect and the presence of chiral spin textures, such as skyrmions. We compare our heterostructure with a parallel resistor model, where the inputs are the AHE data from individual Sr0.6Ca0.4RuO3 and SrRuO3 films. To check for the presence of skyrmions, we measure the current dependence, angle dependence, and minor loop dependence of R-hump in the heterostructure. Despite the clear hump, no evidence of skyrmions is found.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据