4.7 Article

Ubiquity of avalanches: Crackling noise in kidney stones and porous materials

期刊

APL MATERIALS
卷 11, 期 3, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0138123

关键词

-

向作者/读者索取更多资源

Systematic advances in acoustic emission (AE) spectroscopy have allowed for its applications in various fields, including medicine and minerals. This paper demonstrates the analysis of biological samples (kidney stones) and porous geological materials using AE, providing insights for further applications in medicine and geology.
Systematic advances in the resolution and analytical interpretation of acoustic emission (AE) spectroscopy have, over the last decade, allowed for extensions into novel fields. The same dynamic failure patterns, which have been identified in earthquakes, magnetism, and switching of ferroelastic and ferroelectric materials, are shown, in this paper, to be equally important in medicine, and minerals, in the geological context, to give just two examples. In the first application, we show that biological samples, i.e., kidney stones, can be analyzed with acoustic emission and related to the progression of mechanical avalanches. Discrepancies between strong and weak AE signals are shown to have separate avalanche exponents for a urate kidney stone, with evidence of slight multi-branching. It is proposed that investigations of this nature can be adopted to the field of medicine, and in the case of kidney stones, can provide a blueprint for selecting ideal combinations of energy and frequency to instigate their destruction. In a second example, porous geological material failure is shown to proceed equally in avalanches, and precursors to catastrophic failure can be detected via AE. Warning signs of impeding macroscopic collapse, e.g., in mining activities, show systematic evolution of energy exponents. Ultimately, this behavior is a result of geological processes, man-made bio-mineralization, or the burning of carbon inclusions, creating pores and holes, causing cracks, and accelerating their interactions. (c) 2023 Author(s).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据