4.8 Article

Mass Production of Customizable Core-Shell Active Materials in Seconds by Nano-Vapor Deposition for Advancing Lithium Sulfur Battery

期刊

ADVANCED SCIENCE
卷 10, 期 20, 页码 -

出版社

WILEY
DOI: 10.1002/advs.202207584

关键词

core-shell active materials; high energy density lithium metal batteries; micro-adhesion guided nanostorm technology; nano-coating and nanofabrication; nano-vapor deposition

向作者/读者索取更多资源

By utilizing the frictional heating and dispersion capability of the nanostorm technology, sulfur-rich active particles can be coated with shell nanomaterials in seconds. This technology enables customizable nano-shell production in a super-efficient and solvent-free way.
Rational design and scalable production of core-shell sulfur-rich active materials is vital for not only the practical success of future metal-sulfur batteries but also for a deep insight into the core-shell design for sulfur-based electrochemistry. However, this is a big challenge mainly due to the lack of efficient strategy for realizing precisely controlled core-shell structures. Herein, by harnessing the frictional heating and dispersion capability of the nanostorm technology developed in the authors' laboratory, it is surprisingly found that sulfur-rich active particles can be coated with on-demand shell nanomaterials in seconds. To understand the process, a micro-adhesion guided nano-vapor deposition (MAG-NVD) working mechanism is proposed. Enabled by this technology, customizable nano-shell is realized in a super-efficient and solvent-free way. Further, the different roles of shell characteristics in affecting the sulfur-cathode electrochemical performance are discovered and clarified. Last, large-scale production of calendaring-compatible cathode with the optimized core-shell active materials is demonstrated, and a Li-S pouch-cell with 453 Wh kg(-1)@0.65 Ah is also reported. The proposed nano-vapor deposition may provide an attractive alternative to the well-known physical and chemical vapor deposition technologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据