4.6 Article

P-type Semiconducting Polymers as Photocathodes: A Comparative Study for Optobioelectronics

期刊

ADVANCED ELECTRONIC MATERIALS
卷 -, 期 -, 页码 -

出版社

WILEY
DOI: 10.1002/aelm.202300146

关键词

biocompatible; bioelectronics; HUVECs; organics; photocathodes; photoelectrochemistry; photoelectrodes

向作者/读者索取更多资源

Recent studies have shown that p-type polymeric semiconductors enable a new type of wireless, optically triggered interface with cells and tissues. Poly(3-hexylthiophene-2,5-diyl) (P3HT) has been used to create optobioelectronic interfaces, but its use in biomedical in-vivo applications is limited by its optical absorption. This paper compares the performance of P3HT with two low band-gap polymers, PBDB-T and PTB7, commonly used in organic solar cells. The study finds that PTB7 has superior photocurrent generation and hydrogen peroxide photogeneration yield compared to the other two polymers, indicating its potential for development in optically operated bioelectronic interfaces.
Recent studies have shown that p-type polymeric semiconductors enable a new type of wireless, optically triggered interface with cells and tissues. Poly(3-hexylthiophene-2,5-diyl) (P3HT) has already been used to create such optobioelectronic interfaces, producing reactive oxygen species and hydrogen peroxide that act as messengers in biological systems to impact cell signaling and proliferation. However, the use of P3HT in biomedical in-vivo applications is limited as its optical absorption does not match the tissue transparency window. This paper compares the performance of P3HT with two low band-gap polymers commonly employed in high-performance organic solar cells, namely Poly[[4,8-bis[5-(2-ethylhexyl)-2-thienyl]benzo[1,2-b:4,5-b ']dithiophene-2,6-diyl]-2,5-thiophenediyl[5,7-bis(2-ethylhexyl)-4,8-dioxo-4H,8H-benzo[1,2-c:4,5-c ']dithiophene-1,3-diyl]] (PBDB-T) and Poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b ']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b] thiophenediyl}) (PTB7). Their photogeneration capabilities are quantified in physiological-like conditions through photocurrent analysis and a hydrogen peroxide assay, finding a superior photocurrent generation and a better H2O2 photogeneration yield in PTB7 as compared to the other two polymers. Spectroscopic and structural investigations are used to compare such differences by comparing their energy levels at the electrochemical interface and their morphologies. Finally, biocompatibility is tested both in dark and illuminated conditions and effective in-vitro intracellular ROS production is demonstrated. These findings provide insight into the physico-chemical properties crucial for the development of novel, less invasive, optically operated bioelectronic interfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据