4.5 Article

Protecting Quantum Modes in Optical Fibers

期刊

PHYSICAL REVIEW APPLIED
卷 19, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevApplied.19.054080

关键词

-

向作者/读者索取更多资源

Polarization-preserving fibers cannot preserve two nonorthogonal states required for quantum communication. We propose an alternative scheme using helically twisted photonic crystal fibers to enable polarization encoding in the continuous-variable regime. Experimental results show that appropriate nonorthogonal modes in the polarization-preserving fiber do not fully scramble over the full Poincare sphere, but remain on a great circle, forming a one-dimensional protected subspace that can be parametrized by a single variable. This allows for more efficient measurements of quantum excitations in nonorthogonal modes.
Polarization-preserving fibers maintain the two polarization states of an orthogonal basis. Quantum communication, however, requires sending at least two nonorthogonal states and these cannot both be preserved. We present an alternative scheme that allows for using polarization encoding in a fiber not only in the discrete, but also in the continuous-variable regime. For the example of a helically twisted photonic crystal fiber, we experimentally demonstrate that using appropriate nonorthogonal modes, the polarization-preserving fiber does not fully scramble these modes over the full Poincare sphere, but that the output polarization will stay on a great circle; that is, within a one-dimensional protected subspace, which can be parametrized by a single variable. This allows for more efficient measurements of quantum excitations in nonorthogonal modes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据