4.6 Article

Chemical and toxicological assessment of leachates from UV-degraded plastic materials using in-vitro bioassays

期刊

PEERJ
卷 11, 期 -, 页码 -

出版社

PEERJ INC
DOI: 10.7717/peerj.15192

关键词

Plastic polymers; Artificial weathering; Plastic additives; Leaching; Endocrine effects; Genotoxicity

向作者/读者索取更多资源

The widespread use of plastics leads to plastic residues being found everywhere in the environment. The degradation processes of plastics under UV irradiation can cause leaching of potentially harmful compounds into the environment. This study investigated the toxicological effects of leachates from different types of plastic materials using in-vitro bioassays, and found genotoxic and estrogenic effects above safety levels in some samples. Further investigations are needed to understand the complex mixture of substances released by plastic materials and their potential harm.
The broad use of plastics and the persistence of the material results in plastic residues being found practically everywhere in the environment. If plastics remain in the (aquatic) environment, natural weathering leads to degradation processes and compounds may leach from plastic into the environment. To investigate the impact of degradation process on toxicity of leachates, different types of UV irradiation (UVC, UV-A/B) were used to simulate weathering processes of different plastic material containing virgin as well as recyclate material and biodegradable polymers. The leached substances were investigated toxicologically using in-vitro bioassays. Cytotoxicity was determined by the MTT-assay, genotoxicity by using the p53-CALUX and Umu-assay, and estrogenic effects by the ER alpha-CALUX. Genotoxic as well as estrogenic effects were detected in different samples depending on the material and the irradiation type. In four leachates of 12 plastic species estrogenic effects were detected above the recommended safety level of 0.4 ng 17 beta-estradiol equivalents/L for surface water samples. In the p53CALUX and in the Umu-assay leachates from three and two, respectively, of 12 plastic species were found to be genotoxic. The results of the chemical analysis show that plastic material releases a variety of known and unknown substances especially under UV radiation, leading to a complex mixture with potentially harmful effects. In order to investigate these aspects further and to be able to give recommendations for the use of additives in plastics, further effect-related investigations are advisable.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据