4.6 Article

A simulation-based evaluation of methods for estimating census population size of terrestrial game species from genetically-identified parent-offspring pairs

期刊

PEERJ
卷 11, 期 -, 页码 -

出版社

PEERJ INC
DOI: 10.7717/peerj.15151

关键词

Genetic markers; Mark-recapture; Population monitoring; Pedigree; Kinship; Wildlife management; Fecundity

向作者/读者索取更多资源

Estimating wildlife population size is crucial for conservation and management, but it is challenging for many species. Recent developments in kinship-based methods provide an alternative approach to estimate abundance using genetic samples. These methods have been successfully applied in commercially important fish species but may not meet assumptions for terrestrial game species. In a simulation study of wild boar and red deer populations, we found that these kin-based methods can accurately estimate population sizes under certain conditions, but biases associated with hunting practices need further investigation.
Estimates of wildlife population size are critical for conservation , management, but accurate estimates are difficult to obtain for many species. Several methods have recently been developed that estimate abundance using kinship relationships observed in genetic samples, particularly parent-offspring pairs. While these methods are similar to traditional Capture-Mark-Recapture, they do not need physical recapture, as individuals are considered recaptured if a sample contains one or more close relatives. This makes methods based on genetically-identified parent-offspring pairs particularly interesting for species for which releasing marked animals back into the population is not desirable or not possible (e.g., harvested fish or game species). However, while these methods have successfully been applied in commercially important fish species, in the absence of life-history data, they are making several assumptions unlikely to be met for harvested terrestrial species. They assume that a sample contains only one generation of parents and one generation of juveniles of the year, while more than two generations can coexist in the hunting bags of long-lived species, or that the sampling probability is the same for each individual, an assumption that is violated when fecundity and/or survival depend on sex or other individual traits. In order to assess the usefulness of kin-based methods to estimate population sizes of terrestrial game species, we simulated population pedigrees of two different species with contrasting demographic strategies (wild boar and red deer), applied four different methods and compared the accuracy and precision of their estimates. We also performed a sensitivity analysis, simulating population pedigrees with varying fecundity characteristics and various levels of harvesting to identify optimal conditions of applicability of each method. We showed that all these methods reached the required levels of accuracy and precision to be effective in wildlife management under simulated circumstances (i.e., for species within a given range of fecundity and for a given range of sampling intensity), while being robust to fecundity variation. Despite the potential usefulness of the methods for terrestrial game species, care is needed as several biases linked to hunting practices still need to be investigated (e.g., when hunting bags are biased toward a particular group of individuals).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据