4.6 Article

1H NMR fecal metabolic phenotyping of periductal fibrosis- and cholangiocarcinoma-specific metabotypes defining perturbation in gut microbial-host co-metabolism

期刊

PEERJ
卷 11, 期 -, 页码 -

出版社

PEERJ INC
DOI: 10.7717/peerj.15386

关键词

Metabolomics; Periductal fibrosis; Cholangiocarcinoma; Nuclear magnetic resonance spectroscopy

向作者/读者索取更多资源

In this study, nuclear magnetic resonance (NMR) metabolomics was used to investigate the fecal metabolic phenotypes of different study groups, including normal bile duct, periductal fibrosis (PDF), and cholangiocarcinoma (CCA) patients. The results revealed distinct fecal metabolic patterns in PDF and CCA patients compared to the normal bile duct group, indicating the involvement of various metabolic pathways in PDF and CCA progression. The study also highlighted the role of gut-microbial host metabolic crosstalk in PDF and/or CCA patients.
Background: The liver fluke Opisthorchis viverrini (OV), which subsequently inhabits the biliary system and results in periductal fibrosis (PDF), is one of the primarily causes of cholangiocarcinoma (CCA), a bile duct cancer with an exceptionally high incidence in the northeast of Thailand and other Greater Mekong Subregion (GMS) countries. Insights in fecal metabolic changes associated with PDF and CCA are required for further molecular research related to gut health and potential diagnostic biological marker development.Methods: In this study, nuclear magnetic resonance (NMR) metabolomics was applied for fecal metabolic phenotyping from 55 fecal water samples across different study groups including normal bile duct, PDF and CCA groups.Results: By using NMR spectroscopy-based metabolomics, fecal metabolic profiles of patients with CCA or PDF and of individuals with normal bile duct have been established with a total of 40 identified metabolites. Further multivariate statistical analysis and hierarchical clustering heat map have demonstrated the PDF-and CCA-specific metabotypes through various altered metabolite groups including amino acids, alcohols, amines, anaerobic glycolytic metabolites, fatty acids, microbial metabolites, sugar, TCA cycle intermediates, tryptophan catabolism substrates, and pyrimidine metabolites. Compared to the normal bile duct group, PDF individuals showed the significantly elevated relative concentrations of fecal ethanol, glycine, tyrosine, and N-acetylglucosamine whereas CCA patients exhibited the remarkable fecal metabolic changes that can be evident through the increased relative concentrations of fecal uracil, succinate, and 5-aminopentanoate. The prominent fecal metabolic alterations between CCA and PDF were displayed by the reduction of relative concentration of methanol observed in CCA. The metabolic alterations associated with PDF and CCA progression have been proposed with the involvement of various metabolic pathways including TCA cycle, ethanol biogenesis, hexamine pathway, methanol biogenesis, pyrimidine metabolism, and lysine metabolism. Among them, ethanol, methanol, and lysine metabolism strongly reflect the association of gut-microbial host metabolic crosstalk in PDF and/or CCA patients. Conclusion: The PDF-and CCA-associated metabotypes have been investigated displaying their distinct fecal metabolic patterns compared to that of normal bile duct group. Our study also demonstrated that the perturbation in co-metabolism of host and gut bacteria has been involved from the early step since OV infection to CCA tumorigenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据