4.6 Article

Crosstalk between miR-144/451 and Nrf2 during Recovery from Acute Hemolytic Anemia

期刊

GENES
卷 14, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/genes14051011

关键词

miR-144/451; Nrf2; hemolytic anemia; reactive oxygen species

向作者/读者索取更多资源

miR-144/451 and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) regulate antioxidative systems that maintain redox homeostasis in erythroid cells. The coordination and impact of these genes on ROS scavenging and anemia recovery were explored in this study. The findings revealed a complex crosstalk between miR-144/451 and Nrf2, and that miRNA deficiency can result in more profound erythropoiesis defects than dysfunctional transcription factors.
miR-144/451 and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) regulate two antioxidative systems that have been identified to maintain redox homeostasis in erythroid cells by removing excess reactive oxygen species (ROS). Whether these two genes coordinate to affect ROS scavenging and the anemic phenotype, or which gene is more important for recovery from acute anemia, has not been explored. To address these questions, we crossed miR-144/451 knockout (KO) and Nrf2 KO mice and examined the phenotype change in the animals as well as the ROS levels in erythroid cells either at baseline or under stress condition. Several discoveries were made in this study. First, Nrf2/miR-144/451 double-KO mice unexpectedly exhibit similar anemic phenotypes as miR-144/451 single-KO mice during stable erythropoiesis, although compound mutations of miR-144/451 and Nrf2 lead to higher ROS levels in erythrocytes than single gene mutations. Second, Nrf2/miR-144/451 double-mutant mice exhibit more dramatic reticulocytosis than miR-144/451 or Nrf2 single-KO mice during days 3 to 7 after inducing acute hemolytic anemia using phenylhydrazine (PHZ), indicating a synergistic effect of miR-144/451 and Nrf2 on PHZ-induced stress erythropoiesis. However, the coordination does not persist during the whole recovery stage of PHZ-induced anemia; instead, Nrf2/miR-144/451 double-KO mice follow a recovery pattern similar to miR-144/451 single-KO mice during the remaining period of erythropoiesis. Third, the complete recovery from PHZ-induced acute anemia in miR-144/451 KO mice takes longer than in Nrf2 KO mice. Our findings demonstrate that complicated crosstalk between miR-144/451 and Nrf2 does exist and the crosstalk of these two antioxidant systems is development-stage-dependent. Our findings also demonstrate that miRNA deficiency could result in a more profound defect of erythropoiesis than dysfunctional transcription factors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据