4.7 Review

Hydrogen sulfide plays an important role by regulating endoplasmic reticulum stress in myocardial diseases

期刊

FRONTIERS IN PHARMACOLOGY
卷 14, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fphar.2023.1172147

关键词

endoplasmic reticulum stress; hydrogen sulfide; myocardial diseases; oxidative stress; apoptosis

向作者/读者索取更多资源

Endoplasmic reticulum (ER) plays a critical role in protein synthesis and processing. When ER is overloaded with misfolded proteins, ER stress is triggered. Hydrogen sulfide (H2S) has been recognized as an important gas signal molecule, with regulatory effects on various physiological and pathological processes. This review focuses on the role of H2S in regulating ER stress in myocardial diseases, aiming to provide a better understanding of its mechanisms.
Endoplasmic reticulum (ER) is an important organelle for protein translation, folding and translocation, as well as the post-translational modification and assembly of newly synthesized secreted proteins. When the excessive accumulation of misfolded and/or unfolded proteins exceeds the processing capacity of ER, ER stress is triggered. The integrated intracellular signal cascade, namely the unfolded protein response, is induced to avoid ER stress. ER stress is involved in many pathological and physiological processes including myocardial diseases. For a long time, hydrogen sulfide (H2S) has been considered as a toxic gas with the smell of rotten eggs. However, more and more evidences indicate that H2S is an important gas signal molecule after nitric oxide and carbon monoxide, and regulates a variety of physiological and pathological processes in mammals. In recent years, increasing studies have focused on the regulatory effects of H2S on ER stress in myocardial diseases, however, the mechanism is not very clear. Therefore, this review focuses on the role of H2S regulation of ER stress in myocardial diseases, and deeply analyzes the relevant mechanisms so as to lay the foundation for the future researches.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据