4.6 Article

Microstructural and functional impairment of the basal ganglia in Wilson's disease: a multimodal neuroimaging study

期刊

FRONTIERS IN NEUROSCIENCE
卷 17, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fnins.2023.1146644

关键词

Wilson's disease; multimodal MRI; basal ganglia; iron; neuroimaging biomarker

向作者/读者索取更多资源

This study investigates the relationship between magnetic susceptibility changes and other microstructural and functional alterations in subcortical nuclei of Wilson's disease patients. It also explores the diagnostic utility of these MRI-related metrics. Results show that Wilson's disease patients exhibit increased susceptibility, widespread atrophy, and microstructural impairments in the basal ganglia. The study concludes that microstructural impairment of the basal ganglia and brain atrophy are useful neuroimaging biomarkers for assessing neurological impairment in Wilson's disease.
ObjectivesMagnetic susceptibility changes in brain MRI of Wilson's disease (WD) patients have been described in subcortical nuclei especially the basal ganglia. The objectives of this study were to investigate its relationship with other microstructural and functional alterations of the subcortical nuclei and the diagnostic utility of these MRI-related metrics. MethodsA total of 22 WD patients and 20 healthy controls (HCs) underwent 3.0T multimodal MRI scanning. Susceptibility, volume, diffusion microstructural indices and whole-brain functional connectivity of the putamen (PU), globus pallidus (GP), caudate nucleus (CN), and thalamus (TH) were analyzed. Receiver operating curve (ROC) was applied to evaluate the diagnostic value of the imaging data. Correlation analysis was performed to explore the connection between susceptibility change and microstructure and functional impairment of WD and screen for neuroimaging biomarkers of disease severity. ResultsWilson's disease patients demonstrated increased susceptibility in the PU, GP, and TH, and widespread atrophy and microstructural impairments in the PU, GP, CN, and TH. Functional connectivity decreased within the basal ganglia and increased between the PU and cortex. The ROC model showed higher diagnostic value of isotropic volume fraction (ISOVF, in the neurite orientation dispersion and density imaging model) compared with susceptibility. Severity of neurological symptoms was correlated with volume and ISOVF. Susceptibility was positively correlated with ISOVF in GP. ConclusionMicrostructural impairment of the basal ganglia is related to excessive metal accumulation in WD. Brain atrophy and microstructural impairments are useful neuroimaging biomarkers for the neurological impairment of WD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据