4.5 Article

Engineering Redox Flow Battery Electrodes with Spatially Varying Porosity Using Non-Solvent-Induced Phase Separation

期刊

ENERGY TECHNOLOGY
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/ente.202300137

关键词

mass transport; non-solvent-induced phase separation; porosity-gradient microstructures; porous carbon electrodes; redox flow batteries

向作者/读者索取更多资源

This article presents a new non-solvent-induced phase-separation (NIPS) technique for synthesizing macrovoid-free electrodes with well-defined across-thickness porosity gradients. The performance and surface chemistries of porosity-gradient electrodes are compared with macrovoid-containing electrodes. The results show that the porosity-gradient electrodes outperform the macrovoid-containing electrodes in electrochemical and fluid dynamic performance, regardless of the gradient direction.
Redox flow batteries (RFBs) are a promising electrochemical platform for efficiently and reliably delivering electricity to the grid. Within the RFB, porous carbonaceous electrodes facilitate electrochemical reactions and distribute the flowing electrolyte. Tailoring electrode microstructure and surface area can improve RFB performance, lowering costs. Electrodes with spatially varying porosity may increase electrode utilization and provide surface area in reaction-limited zones; however, the efficacy of such designs remains an open area of research. Herein, a non-solvent-induced phase-separation (NIPS) technique that enables the reproducible synthesis of macrovoid-free electrodes with well-defined across-thickness porosity gradients is described. The monotonically varying porosity profile is quantified and the physical properties and surface chemistries of porosity-gradient electrodes are compared with macrovoid-containing electrode, also synthesized by NIPS. Then, the electrochemical and fluid dynamic performance of the porosity-gradient electrodes is evaluated, exploring the effect of changing the direction of the porosity gradient and benchmarking against the macrovoid-containing electrode. Lastly, the performance is examined in a vanadium RFB, finding that the porosity-gradient electrode outperforms the macrovoid electrode, is independent of gradient direction, and performs favorably compared to advanced electrodes in the contemporary literature. It is anticipated that the approach motivates further exploration of microstructurally tailored electrodes in electrochemical systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据