4.6 Article

Efficient Oxidative Dehydrogenation of Ethylbenzene over K/CeO2 with Exceptional Styrene Yield

期刊

CATALYSTS
卷 13, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/catal13040781

关键词

ethylbenzene; oxidative dehydrogenation; ceria; CO2

向作者/读者索取更多资源

An ODH process using a CO2-O2 mixture atmosphere was proposed for the efficient conversion of ethylbenzene into styrene with high ethylbenzene conversion and styrene selectivity. Under optimized conditions, the catalyst achieved 90.8% ethylbenzene conversion and 97.5% styrene selectivity. CO2 induced oxygen vacancies in ceria and promoted oxygen exchange between gaseous oxygen and ceria. The proposed ODH strategy using oxygen vacancies enriched catalysts offers an important insight into the efficient dehydrogenation of ethylbenzene at mild conditions.
Oxidative dehydrogenation (ODH) is an alternative for styrene (ST) production compared to the direct dehydrogenation process. However, ODH with O-2 or CO2 suffers from either over-oxidation or endothermic property/low ethylbenzene conversion. Herein, we proposed an ODH process with a CO2-O-2 mixture atmosphere for the efficient conversion of ethylbenzene (EB) into styrene. A thermoneutral ODH is possible by the rationalizing of CO2/O-2 molar ratios from 0.65 to 0.66 in the temperature range of 300 to 650 degrees C. K modification is favorable for ethylbenzene dehydrogenation, and 10%K/CeO2 achieved the highest ethylbenzene dehydrogenation activity due to the enhanced oxygen mobility and CO2 adsorbability. The catalyst achieved 90.8% ethylbenzene conversion and 97.5% styrene selectivity under optimized conditions of CO2-4O(2) oxidation atmosphere, a temperature of 500 degrees C, and a space velocity of 5.0 h(-1). It exhibited excellent catalytic and structural stability during a 50 h long-term test. CO2 induces oxygen vacancies in ceria and promotes oxygen exchange between gaseous oxygen and ceria. The ethylbenzene dehydrogenation in CO2-O-2 follows a Mars-van Krevelen (MvK) reaction mechanism via Ce3+/Ce4+ redox pairs. The proposed ODH strategy by using oxygen vacancies enriched catalysts offers an important insight into the efficient dehydrogenation of ethylbenzene at mild conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据