4.5 Article

Brain activity associated with taste stimulation: A mechanism for neuroplastic change?

期刊

BRAIN AND BEHAVIOR
卷 13, 期 4, 页码 -

出版社

WILEY
DOI: 10.1002/brb3.2928

关键词

functional magnetic resonance imaging (fMRI); sensorimotor; taste stimulation

向作者/读者索取更多资源

By administering precisely formulated taste stimuli to healthy adults, researchers found that brain activity in regions relevant to swallowing can be enhanced. These findings are critical for understanding the effects of taste on brain activity and swallowing function, as well as for improving recovery for individuals with swallowing disorders.
PurposeNeuroplasticity may be enhanced by increasing brain activation and bloodflow in neural regions relevant to the target behavior. We administered precisely formulated and dosed taste stimuli to determine whether the associated brain activity patterns included areas that underlie swallowing control. MethodsFive taste stimuli (unflavored, sour, sweet-sour, lemon, and orange suspensions) were administered in timing-regulated and temperature-controlled 3 mL doses via a customized pump/tubing system to 21 healthy adults during functional magnetic resonance imaging (fMRI). Whole-brain analyses of fMRI data assessed main effects of taste stimulation as well as differential effects of taste profile. ResultsDifferences in brain activity associated with taste stimulation overall as well as specific stimulus type were observed in key taste and swallowing regions including the orbitofrontal cortex, insula, cingulate, and pre- and postcentral gyri. Overall, taste stimulation elicited increased activation in swallowing-related brain regions compared to unflavored trials. Different patterns of blood oxygen level-dependent (BOLD) signal were noted by taste profile. For most areas, sweet-sour and sour trials elicited increases in BOLD compared to unflavored trials within that region, whereas lemon and orange trials yielded reductions in BOLD. This was despite identical concentrations of citric acid and sweetener in the lemon, orange, and sweet-sour solutions. ConclusionsThese results suggest that neural activity in swallowing-relevant regions can be amplified with taste stimuli and may be differentially affected by specific properties within very similar taste profiles. These findings provide critical foundational information for interpreting disparities in previous studies of taste effects on brain activity and swallowing function, defining optimal stimuli to increase brain activity in swallowing-relevant regions, and harnessing taste to enhance neuroplasticity and recovery for persons with swallowing disorders.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据