4.5 Article

A Dual-Population Genetic Algorithm with Q-Learning for Multi-Objective Distributed Hybrid Flow Shop Scheduling Problem

期刊

SYMMETRY-BASEL
卷 15, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/sym15040836

关键词

genetic algorithm; Q-learning; distributed scheduling; hybrid flow shop; multi-objective optimization

向作者/读者索取更多资源

A dual-population genetic algorithm with Q-learning is proposed to solve multi-objective distributed hybrid flow shop scheduling problems. Multiple crossover and mutation operators are used, and only one search strategy combination is selected in each iteration. Experimental results show the competitiveness of the proposed algorithm.
In real-world production processes, the same enterprise often has multiple factories or one factory has multiple production lines, and multiple objectives need to be considered in the production process. A dual-population genetic algorithm with Q-learning is proposed to minimize the maximum completion time and the number of tardy jobs for distributed hybrid flow shop scheduling problems, which have some symmetries in machines. Multiple crossover and mutation operators are proposed, and only one search strategy combination, including one crossover operator and one mutation operator, is selected in each iteration. A population assessment method is provided to evaluate the evolutionary state of the population at the initial state and after each iteration. Two populations adopt different search strategies, in which the best search strategy is selected for the first population and the search strategy of the second population is selected under the guidance of Q-learning. Experimental results show that the dual-population genetic algorithm with Q-learning is competitive for solving multi-objective distributed hybrid flow shop scheduling problems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据