4.6 Article

Effect of Carbon Content in Wheat Straw Biochar on N2O and CO2 Emissions and Pakchoi Productivity Under Different Soil Moisture Conditions

期刊

SUSTAINABILITY
卷 15, 期 6, 页码 -

出版社

MDPI
DOI: 10.3390/su15065100

关键词

N2O and CO2 emissions; pakchoi cabbage; subsurface drip irrigation; irrigation depths

向作者/读者索取更多资源

Agricultural soils are a major contributor to greenhouse gas emissions. Biochar, used as a soil amendment, can help mitigate climate change by reducing GHG production, increasing carbon storage, improving moisture retention, and enhancing crop productivity. However, the impact of biochar's carbon content under subsurface drip irrigation (SDI) has not been well studied.
Agricultural soils are a primary source of greenhouse gas (GHG) emissions. Biochar is commonly used as a soil amendment to prevent climate change by reducing GHG production, increasing soil carbon storage, improving soil moisture retention, and enhancing crop productivity. However, the impact of biochar's carbon content under subsurface drip irrigation (SDI) has not been well studied. Here, we investigated the effect of different carbon (C) contents in wheat biochar under different SDI depths on soil nitrous oxide (N2O), carbon dioxide (CO2), soil moisture distribution, and Pakchoi productivity. A pot experiment was conducted using three SDI depths, emitters buried at 0.05, 0.10, and 0.15 m below the soil's surface, and three levels of C content named zero biochar (CK), 50% C (low (L)), and 95% C (high (H)) in greenhouse cultivation. The findings showed biochar significantly decreased N2O and CO2 emissions. Compared to CK, the L and H treatments decreased N2O by (18.20, 28.14%), (16.65, 17.51%), and 11.05, 18.65%) under SDI5, SDI10, and SDI15, respectively. Similarly, the L and H treatments decreased CO2 by (8.05, 31.46%), (6.96, 28.88%), and (2.97, 7.89%) under SDI5, SDI10, and SDI15, respectively. Compared to CK, L and H increased soil moisture content. All plant growth parameters and yield traits were enhanced under SDI5. In summary, biochar addition significantly decreased soil N2O and CO2 emissions compared to CK, and increased growth performance and yield, and maintained soil moisture content. The H treatment significantly reduced N2O and CO2 emissions, increased plant growth and yield, and maintained soil moisture content compared to the L treatment. Soil moisture was reduced vertically and horizontally with increased radial distance from the emitter.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据